Cartan-Egg域与复欧氏空间的不相关性  被引量:1

Non-relativity of Cartan-Egg domains and complex Euclidean spaces

在线阅读下载全文

作  者:程晓亮[1] 王博[1] 郝毅红 CHENG Xiaoiang;WANG Bo;HAO Yihong(College of Mathematics and Computer,Jilin Normal University,Siping,Jilin 136000,China;School of Mathematics,Northwest University,Xi’an 710127,China)

机构地区:[1]吉林师范大学数学与计算机学院,吉林四平136000 [2]西北大学数学学院,西安710127

出  处:《华东师范大学学报(自然科学版)》2023年第4期43-51,共9页Journal of East China Normal University(Natural Science)

基  金:国家自然科学基金(12026420);吉林省教育厅“十三五”科学技术项目(JJKH20200405KJ);吉林省科技发展计划项目(YDZJ202201ZYTS627)。

摘  要:多复变中某些特定度量下的域与复欧氏空间的相关性一直是近年来研究的热点问题.如果两个Kähler流形具有公共的Kähler子流形,则称它们是相关的,否则称为不相关的.Cartan-Egg域是一类非常好的有界非齐性域,其Bergman核函数的显表达式可以通过膨胀原理构造得到,研究具有Bergman度量的Cartan-Egg域与具有平坦度量的复欧氏空间的相关性是有意义的.如果一个域的Bergman核函数是Nash函数,容易分析在其诱导的Bergman度量下与复欧氏空间的相关性,而Cartan-Egg域的Bergman核函数不是Nash函数.通过分析Cartan-Egg域的Bergman核函数的偏导函数的代数性质,得到具有Bergman度量的Cartan-Egg域与具有平坦度量的复欧氏空间是不相关的.In recent years,the relativity between domains with specific metrics and complex Euclidean spaces has been a topic of interest in the study of complex variables.Two Kähler manifolds are called relatives if they admit a common Kähler submanifold with their induced metrics.A Cartan-Egg domain is a type of bounded non-homogeneous domain.Its Bergman kernel function can be constructed as an explicit expression using the expansion principle.In this paper,the relativity between a Cartan-Egg domain with Bergman metrics and a complex Euclidean space with canonical metrics is explored.In relation research of complex Euclidean spaces,the working premise is that a Bergman kernel function is a Nash function.However,the Bergman kernel function of Cartan-Egg domains are not necessarily Nash functions.Therefore,existing methods cannot be used directly.By analyzing the algebraic properties of a Bergman kernel function’s partial derivative function of a Cartan-Egg domain,we show that a Cartan-Egg domain with Bergman metrics is not related to a complex Euclidean space with canonical metrics.

关 键 词:Cartan-Egg域 等距嵌入 Nash函数 BERGMAN度量 

分 类 号:O174.56[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象