改进的基于YOLOv5s苹果树叶病害检测  被引量:11

Improved apple leaf disease detection based on YOLOv5s

在线阅读下载全文

作  者:周绍发 肖小玲[1] 刘忠意 鲁力 Zhou Shaofa

机构地区:[1]长江大学计算机科学学院,湖北荆州434000

出  处:《江苏农业科学》2023年第13期212-220,共9页Jiangsu Agricultural Sciences

基  金:国家自然科学基金(编号:61771354)。

摘  要:针对目前在复杂环境下苹果树叶病害检测准确度低、鲁棒性差、计算量大等问题,提出一种改进的基于YOLOv5s苹果树叶病害的检测方法。首先,该方法在YOLOv5s网络基础上,选择考虑方向性的SIoU边框损失函数替代CIoU边框损失函数,使网络训练和推理过程更快,更准确。其次,在特征图转换成固定大小的特征向量的过程中,使用了简单化的快速金字塔池化(SimSPPF)替换快速金字塔池化(SPPF)模块,在不影响效率的情况下丢失的信息更少。最后在主干网络中使用BoTNet(bottleneck transformers)注意力机制,使网络准确的学习到每种病害的独有特征,并且使网络收敛更快。结果表明,相比于基准网络YOLOv5s,改进后的YOLOv5s网络mAP精度为86.5%,计算量为15.5GFLOPs,模型权重大小为13.1 MB,相对于基准YOLOv5s,平均精度提升了6.3百分点、计算量降低了0.3GFLOPs、模型权重压缩了1 MB。并适用于遮挡、阴影、强光、模糊的复杂环境。本研究所提出的方法,在降低了网络大小、权重、计算量的情况下提高了复杂环境下苹果树叶病害的检测精度,且对复杂环境具有一定的鲁棒性。在预防和治理苹果树叶病害上有较高的实际应用价值,在后续研究上,会扩充更多类别的病害数据集,部署到无人机等物联网设备,从而为实现智能果园种植提供技术参考。

关 键 词:苹果树叶病害 目标检测 YOLOv5s bottleneck transformers SIoU 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象