基于深度门限堆叠长短期记忆神经网络的交通流量预测  

在线阅读下载全文

作  者:郝贵发 王宁 

机构地区:[1]镇江市公路事业发展中心

出  处:《数字技术与应用》2023年第7期52-54,共3页Digital Technology & Application

摘  要:深度学习和大数据技术在交通流量预测中越来越流行,深度神经网络也已应用于交通流预测。此外,由于模型结构不良,参数优化技术不合适,交通流预测缺乏确定性而不准确。本文所提方法通过将多个简单的递归长短期记忆(LSTM)神经网络与时间特征相结合来克服这些问题,以使用深度门控堆叠神经网络来预测交通流。为了加深模型,已使用无监督的逐层方法来训练隐藏层。隐藏层表示通过捕获多个级别的信息来提高时间序列预测的准确性。此外,论述模型结构、随机权重初始化和堆叠LSTM中使用的超参数对增强预测性能的重要性。

关 键 词:深度神经网络 长短期记忆 大数据技术 交通流量预测 交通流预测 深度学习 门控 超参数 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象