检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方港 袁珑华 王晓明[2] 李艳 黄道平 于广平 叶洪涛[4] 刘乙奇 FANG Gang;YUAN Longhua;WANG Xiaoming;LI Yan;HUANG Daoping;YU Guangping;YE Hongtao;LIU Yiqi(School of Automation Science and Engineering/Key Laboratory of Autonomous Systems and Networked Control of the Ministry of Education,South China University of Technology,Guangzhou 510640,Guangdong,China;School of Future Technology,South China University of Technology,Guangzhou 511442,Guangdong,China;Guangzhou Industrial Intelligence Research Institute,Guangzhou 511458,Guangdong,China;Guangxi Key Laboratory of Automobile Components and Vehicle Technology,Guangxi University of Science and Technology,Liuzhou 545036,Guangxi,China;Unmanned Aerial Vehicle Systems Engineering Technology Research Center of Guangdong,South China University of Technology,Guangzhou 510640,Guangdong,China)
机构地区:[1]华南理工大学自动化科学与工程学院/自主系统与网络控制教育部重点实验室,广东广州510640 [2]华南理工大学未来技术学院,广东广州511442 [3]广州工业智能研究院,广东广州511458 [4]广西科技大学广西汽车零部件与整车技术重点实验室,广西柳州545036 [5]华南理工大学广东省无人机系统工程技术研究中心,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2023年第8期126-136,共11页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(62273151,61873096,62073145);广东省基础与应用基础研究基金资助项目(2021B1515420003,2020A1515011057);广东省国际合作基金资助项目(2020A0505100024,2021A0505060001)。
摘 要:污水处理系统是一个复杂的非线性、大时延的动态系统,由于工艺的复杂性、检测设备的不完备性以及经济成本的限制,一些重要的出水指标无法实现精准的检测。为解决此问题,文中提出了基于集合卡尔曼-Elman网络的软测量方法。传统动态神经网络具有能够处理时延信息数据的动态记忆能力,可用于基于数据驱动的软测量建模过程。但是,常规训练方法容易使神经网络陷入局部最小值,导致模型预测性能欠佳。鉴于此,文中引入集合卡尔曼滤波技术和对偶有限样本集合卡尔曼技术对典型的动态神经网络——Elman神经网络进行无梯度训练,构建新型软传感器模型,不仅有效提高了传统Elman神经网络的预测能力,而且提供了一种简单、无梯度的神经网络训练方法。将该方法在加州大学欧文分校的污水处理数据(UCI数据)上进行验证,结果表明,文中方法具有较好的预测性能,集合卡尔曼滤波技术可作为一种无梯度的替代方法来训练神经网络。Wastewater treatment system is a dynamic system with complex nonlinearity and large time delay.Due to the complexity of the process,the incompleteness of the testing equipment and the constraint of economic cost,some important effluent indicators cannot be detected accurately.To solve this problem,this paper proposes a soft-sensor method based on an ensemble Kalman filter-Elman neural network.The traditional dynamic neural network has the dynamic memory ability to process time-delay data,so it can be used in data-driven soft sensing modeling.However,the conventional training method is easy to trap in a local minimum,resulting in poor prediction performance.This paper introduces the ensemble Kalman filter and the dual finite-size ensemble Kalman filter,and,together with the Elman neural network for gradient-free training,to construct two soft sensor models,which not only improve the prediction performance of Elman neural network but also provide a simple and gradient-free training method for neural network.The two models are then applied to a dataset of the University of California,Irvine(UCI data).The results show that the proposed method based on ensemble Kalman filter-Elman neural network possesses good prediction performance,and that the ensemble Kalman filter can be used as an alternative gradient-free method to train neural networks.
关 键 词:软测量 集合卡尔曼滤波 ELMAN神经网络 污水处理
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38