基于改进YOLOv4的飞机导管喇叭口缺陷检测  被引量:1

Defect Detection of Aircraft Bell shape Tubes Based on Improved YOLOv4

在线阅读下载全文

作  者:周艺璇 周鸿[2] 姚勇[2] 李冲 李玉斌[2] ZHOU Yi-xuan;ZHOU Hong;YAO Yong;LI Chong;LI Yu-bin(Xi′an Aeronautics Computing Technique Research Institute,AVIC,Xi′an 710000,China;Xidian University,Xi′an 710000,China)

机构地区:[1]航空工业西安航空计算技术研究所,陕西西安710000 [2]西安电子科技大学,陕西西安710000

出  处:《航空计算技术》2023年第4期66-70,共5页Aeronautical Computing Technique

基  金:安徽省产学研合作基金项目资助(XWYCXY-012020006)。

摘  要:通过人工对飞机导管喇叭口(AFT)缺陷进行检测过程中存在一定误差且检测率低下。为减少人工检测带来的误检、漏检及提高检测工效,提出了一种基于YOLOv4改进模型的检测飞机导管常见缺陷的方法。通过聚类分析调整锚盒的大小,以更好地匹配小目标和复杂结构的特征。在骨干特征提取网络和空间金字塔池结构输出的不同特征层之后添加卷积层,以提高网络复杂度换取网络对缺陷特征的提取能力。实验结果表明,改进模型在对飞机导管喇叭口缺陷检测中的AP值为92.21%,比原始YOLOv4算法提高16.67%,对单个图像的平均检测时间算法运行速度与原始算法相较没有明显变化。There are problems of accuracy and efficiency in the manually detection of AFT detects.To reduce false or missed detections caused by manual inspection and improve inspection efficiency,this paper proposes a method for detecting common defects in AFT based on the YOLOv4 improved model.Firstly,adjust the size of the anchor box through clustering analysis to match the features of small targets and complex structures better.Then,after different feature layers produced by backbone feature extraction network and spatial pyramid pool structure,this paper adds the convolution layer to these feature layers to improve the network′s ability to extract defect features.These improvements result that the model has an AP value of 92.21%in AFT defectsdetection,which is 16.67%higher than the original YOLOv4 algorithm.But the average detection time of a single image has not significant increasing compared to the original algorithm.

关 键 词:飞机导管喇叭口 缺陷检测 YOLOv4 神经网络 

分 类 号:V328[航空宇航科学与技术—人机与环境工程] O242[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象