检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨佳文 曾台英[1] YANG Jia-wen;ZENG Tai-ying(University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学,上海200093
出 处:《包装工程》2023年第15期175-183,共9页Packaging Engineering
基 金:高水平大学科建设医工交叉创新项目(10-22-309-501)。
摘 要:目的 利用不同人工神经网络算法预测不同蓄冷剂参数下冷链保温箱保温时间,以寻找最适合评估其保温性能的人工神经网络。方法 将实验数据以4∶1的比例分别随机分配训练、测试的样本,分别建立BPNN、RBFNN与GRNN这3种人工神经网络模型,并提出判定系数(R2)、平均绝对误差(MAE)与均方误差(MSE)这3个评价标准。通过算法获得保温时间预测值和评价标准具体值,并且利用随机漫步算法对性能最好的神经网络进行优化。结果 通过R2、MAE和MSE这3个神经网络评价标准以及保温时间的实际值与预测值的对比图,得出RBFNN神经网络的性能最佳、精度最准、拟合最好,它的R^(2)远高于GRNN和BPNN神经网络的,并且MSE值和MAE值远低于GRNN和BPNN神经网络的,3个评价指标分别达到0.999 93、0.009 63和0.062 86。优化后的Random-Walk-RBFNN的性能进一步提高,R^(2)提升了0.004%,MSE值、MAE值和运行时间分别下降了60.02%、34.20%和5.29%。结论 RBFNN神经网络各方面最为突出,更适合用于冷链保温箱保温性能评估,而优化后的Random-Walk-RBFNN性能更优,R2进一步提升,MSE值、MAE值和运行时间进一步下降,评估性能更好。The work aims to use different artificial neural network algorithms to predict the holding time of cold chain in-cubator under different cold storage agent parameters in order to find the most suitable artificial neural network for evaluating the thermal insulation performance.The experimental data were randomly assigned to the training and testing samples in a ratio of 4∶1,and three artificial neural network models,namely BPNN,RBFNN and GRNN,were established respectively.Three evaluation criteria,namely the decision coefficient R2,mean absolute error MAE and mean square error MSE,were proposed.The predicted value of holding time and the specific value of evaluation criteria were obtained by the algorithm,and the neural network with the best performance was optimized by the random walk algorithm.By comparing the three evaluation criteria of R2,MAE and MSE and the actual and predicted values of holding time,it was concluded that RBFNN neural network had the best performance,the most accurate precision and the best fitting.Its R^(2) was much higher than those of GRNN and BPNN neural networks,and MSE and MAE were much lower than those of GRNN and BPNN neural networks.The three evaluation indicators reached 0.99993,0.00963 and 0.06286,respectively.The performance of the optimized Random-Walk-RBFNN was further improved,R2 was increased by 0.004%,and MSE,MAE and running time were decreased by 60.02%,34.20%and 5.29%,respectively.RBFNN neural network is the most outstanding in all aspects,which is more suitable for evaluating the thermal insulation performance of cold chain incubator.The optimized Random-Walk-RBFNN has better performance,im-proves R^(2),reduces MSE,MAE and running time,and achieves better evaluation performance.
分 类 号:TB485.3[一般工业技术—包装工程] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7