检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程元栋[1] 喻可欣 李先洋 CHENG Yuandong;YU Kexin;LI Xianyang(School of Economics and Management,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学经济与管理学院,安徽淮南232001
出 处:《山东交通学院学报》2023年第3期22-28,共7页Journal of Shandong Jiaotong University
基 金:国家自然科学基金项目(71473001);安徽省哲学社会科学规划项目(AHSKY2017D35);安徽省高等学校省级自然科学研究计划项目(KJ2018A0088)。
摘 要:为准确预测区域物流需求,采用自回归移动平均(autoregressive integrated moving average,ARIMA)模型建立具有线性关系的时间序列,考虑时间外的非线性影响因素,基于加权马尔科夫模型修正残差状态,构建加权马尔科夫-ARIMA模型,以我国1990—2021年月度货运周转量为物流需求数据来源,验证加权马尔科夫-ARIMA模型的预测精度。结果表明:单一ARIMA模型和加权马尔科夫-ARIMA模型对12期货运周转量预测结果的平均绝对百分误差分别为3.15%、2.22%,后者的预测精度优于前者。To accurately predict regional business logistical demand,an auto-regressive integrated moving average(ARIMA)model with a linear relationship is established for series of timing,in the meantime,non-linear influences outside of timing are also considered,then,the residual statuses are modified based on the weighted Markov model,finally the weighted Markov-ARIMA model is constructed.To test the predicted accuracy of the weighted Markov-ARIMA model,China′s monthly trucking turnovers from the year 1990 to 2021 as the source of business logistical data are employed.The results show that the average absolute percentage errors of the single ARIMA model and the weighted Markov-ARIMA model for the 12-period trucking turnovers forecasting results are 3.15%and 2.22%respectively,and the forecasting accuracy of the modified model is better than that of the single ARIMA model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147