基于时频多尺度的SSVEP信号快速识别方法  

A Fast Recognition Method of SSVEP Signals Based on Time-Frequency Multiscale

在线阅读下载全文

作  者:王晓甜 崔鑫语 梁硕 陈超[3] WANG Xiaotian;CUI Xinyu;LIANG Shuo;CHEN Chao(School of Artificial Intelligence,Xidian University,Xi’an 710071,China;Guangzhou Institute of Technology,Xidian University,Guangzhou 510555,China;Key Laboratory of Complex System Control Theory and Application,Tianjin University of Technology,Tianjin 300384,China)

机构地区:[1]西安电子科技大学人工智能学院,西安710071 [2]西安电子科技大学广州研究院,广州510555 [3]天津工业大学复杂系统控制理论与应用重点实验室,天津300384

出  处:《电子与信息学报》2023年第8期2788-2795,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(62293483,61976169,62176201);国家重点研发计划项目(2019YFA0706604,2022YFF1202500,2022YFF1202501)。

摘  要:目前基于稳态视觉诱发电位(SSVEP)的脑机接口在人机协作中受到广泛关注,但较短时长SSVEP信号仍面临信噪比较低、特征提取不充分的问题。该文从频域、时域以及空域3个角度分析并提取SSVEP信号特征。首先该方法从由频域实部信息和虚部信息整合的3维重校正特征矩阵中提取幅值和相位特征信息。然后在时域中通过训练多个刺激时窗尺度的样本增强模型表征能力。最后利用不同尺度的1维卷积核,并行提取通道空间和频域上的多尺度特征信息。该文在两种不同的视觉刺激频率和频率间隔的公开数据集上进行实验,在时窗为1 s时的平均准确率和平均信息传输率(ITR)均优于现有的其他方法。A brain-computer interface based on Steady-State Visual Evoked Potential(SSVEP)has recently garnered considerable interest in human-computer cooperation.Nevertheless,SSVEP signals with short time windows suffer from a low signal-to-noise ratio and insufficient feature extraction.This study examines and extracts the SSVEP signal characteristics from three perspectives:frequency domain,time domain and spatial domain.The proposed method extracts the amplitude and phase feature information from a three-dimensional recalibrated feature matrix developed by incorporating the real part and the imaginary part information in the frequency domain.Subsequently,the model’s representation ability is enhanced by training samples across multiple stimulus time window scales in the time domain.Finally,multiscale feature information in the channel space and frequency domain is extracted in parallel by using distinct scaled one-dimensional convolution kernels with.In this paper,experiments are conducted on two open datasets characterized by different visual stimulus frequencies and frequency intervals.The average accuracy and average information transfer rate at a time window of 1 s surpass the performance of existing methods.

关 键 词:稳态视觉诱发电位 脑机接口 多尺度特征 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象