检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周超[1] 王震[1] 秦富童[1] 刘义[1] ZHOU Chao;WANG Zhen;QIN Futong;LIU Yi(Unit 63891 of PLA,China)
机构地区:[1]中国人民解放军63891部队
出 处:《计算机工程与应用》2023年第16期256-261,共6页Computer Engineering and Applications
摘 要:针对软件代码的缺陷预测是常见的研究问题,但基于协议的代码缺陷预测暂时无人尝试研究。提出了改进的有监督跨域协议缺陷预测(enhanced supervised cross-domain protocol defect prediction,ESCPDP)算法,解决跨域缺陷预测中类不平衡及特征冗余等问题。首先提出Mean-ReSMOTE算法来解决数据集的类不平衡问题,其次提出Hybrid-RFE+算法对过采样后的数据进行特征选择,得到最优子集,最后使用支持向量机(support vector machine,SVM)构建有监督缺陷预测模型。在NASA数据集和自主搜集构建的Net协议缺陷数据集上,以Acc、Recall和F1值作为评测指标对提出的模型进行验证,实验结果表明改进的有监督跨域协议缺陷预测算法要优于其他经典算法,具有更好的预测效果。Defect prediction for software code is a common research problem,but protocol-based code defect prediction is an unknown problem for the time being.In this paper,an enhanced supervised cross-domain protocol defect prediction(ESCPDP)algorithm is proposed to solve class imbalance and feature redundancy problems in the cross-domain defect prediction.Firstly,mean-RESMOTE is proposed to solve the problem of class imbalance in the dataset.Secondly,Hybrid-RFE+is proposed to solve the problem of feature selection carried out on the over-sampled data for getting the optimal subset.Finally,support vector machine(SVM)is used to build a supervised defect prediction model.Acc,Recall and F1 values are used as evaluation indexes to verify the proposed model on the NASA dataset and the Net protocol defect dataset independently collected and constructed.Experimental results show that ESCPDP algorithm is superior to other classical algorithms and has better prediction effect.
关 键 词:缺陷预测 类不平衡 过采样 特征选择 有监督学习
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.35.52