考虑能耗的进出站驾驶风格分类及识别模型  被引量:5

Classification and recognition model of entering and leaving stops'driving style considering energy consumption

在线阅读下载全文

作  者:张雅丽[1] 付锐[1] 袁伟[1] 郭应时[1] ZHANG Ya-li;FU Rui;YUAN Wei;GUO Ying-shi(School of Automobile,Chang'an University,Xi'an 710064,China)

机构地区:[1]长安大学汽车学院,西安710064

出  处:《吉林大学学报(工学版)》2023年第7期2029-2042,共14页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(52072046);陕西省重点研发计划项目(2019ZDLGY03-09-02).

摘  要:为实现对进出站驾驶风格的分类与识别,基于纯电动公交车自然驾驶过程中的进出站片段数据,选取14个驾驶行为表征指标,利用主成分分析法对指标降维,建立K-means聚类模型将进出站片段聚为3类;以经济性、动力性和舒适性为语义解释的3个维度,对3类群集语义解释为耗能激进型、一般型和节能舒适型;建立三层BP神经网络模型,实现进出站驾驶风格的在线识别。模型验证发现,识别模型各评价指标值均处于0附近,且模型平均识别率为93.52%,可以较好地实现对任意进出站片段的驾驶风格识别。To realize the classification and recognition of entering and leaving stops′driving styles,based on the entering and leaving stops data in the natural driving process of pure electric bus,14 driving behavior characterization indexes were selected,the dimension of the indexes is reduced by principal component analysis,and a K-means clustering model was established to cluster the entering and leaving stops segments into three categories.Taking economy,dynamic and comfort as the three dimensions of semantic interpretation,the three types were interpreted as high energy consumption&aggressive style,general style and energy-saving&comfort style.A three-layer BP neural network model was established to realize the on-line recognition of driving style.The model verification showed that the evaluation index values of the recognition model are near 0,and the average recognition rate of the model is 93.52%,which can better realize the driving style recognition of any entering and leaving stops segment.

关 键 词:交通工程 驾驶行为 聚类 在线识别模型 驾驶风格 能源经济性 

分 类 号:U121[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象