基于Fibonacci变换和改进Logistic-Tent混沌映射的图像加密方案  被引量:8

Image encryption scheme based on Fibonacci transform and improved Logistic-Tent chaotic map

在线阅读下载全文

作  者:郭现峰 李浩华 魏金玉 GUO Xian-feng;LI Hao-hua;WEI Jin-yu(School of Computer Science and Engineering,Southwest Minzu University,Chengdu 610041,China)

机构地区:[1]西南民族大学计算机科学与工程学院,成都610041

出  处:《吉林大学学报(工学版)》2023年第7期2115-2120,共6页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(61681240391);四川省教育厅重点项目(18ZA0512);西南民族大学中央高校基本科研业务费专项资金项目(2018NQN22).

摘  要:利用混沌映射构造的密码算法具有密钥空间大、安全性高、性能优越等特点,适合加密数据量大、关联性强的多媒体数据。为了进一步提高此类算法的安全特性,很多学者采用复杂的多维混沌迭代加密数据,但同时也增加了计算复杂度。为了降低计算复杂度、提高加解密过程的计算性能,本文利用Fibonacci变换和Logistic-Tent复合混沌映射的优点增强加密过程中的置乱-扩散效果,构造了一个新的图像加密算法。安全性分析和仿真实验证明,本文算法不仅加解密速度快,还能有效抵御暴力破解、信息熵攻击、差分攻击和统计类图像攻击,应用和推广价值较强。At present,in the field of image data encryption,chaos theory encryption method is more prominent.The high randomness,unpredictability and extreme sensitivity of initial parameters of chaotic system provide favorable guarantee for image data security.Based on this kind of mapping,a large number of complex chaotic mapping models have been proposed by scholars at home and abroad.Compared with one-dimensional chaotic mapping,the security has been greatly improved,but the computational complexity has also increased.Therefore,this paper proposes a one-dimensional compound Logistic-Tent algorithm for chaotic mapping,which increases the mapping range of chaotic mapping,reduces the computational complexity and ensures the security of chaotic sequences.Combined with Fibonacci scrambling transform,this algorithm adopts scrambling-diffusion encryption process.Simulation experiments show that the scheme has high encryption rate,and can effectively defend against brute force cracking,entropy attack,difference attack and statistical image attack.

关 键 词:复合混沌 图像 FIBONACCI 加密变换 密钥空间 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象