检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史艳琼 李克凡 卢荣胜[2] 周希勇 Shi Yanqiong;Li Kefan;Lu Rongsheng;Zhou Xiyong(School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei 230601,Anhui,China;School of Instrument Science and Opto-Electronics Engineering,Hefei University of Technology,Hefei 230009,Anhui,China)
机构地区:[1]安徽建筑大学机械与电气工程学院,安徽合肥230601 [2]合肥工业大学仪器科学与光电工程学院,安徽合肥230009
出 处:《激光与光电子学进展》2023年第14期264-272,共9页Laser & Optoelectronics Progress
基 金:国家重点研发计划(2018YFB2003801);安徽建筑大学校引进人才及博士启动基金(2019QDZ16)。
摘 要:针对工业机器人绝对定位精度不高的现状,提出一种基于双目视觉辨识运动学参数的方法。首先,基于modified Denavit-Hartenberg参数建立机器人运动学模型;其次,规划机器人末端以多空间球形运动,采用双目视觉系统测量不同末端位置相对球心的实际距离,与理论距离对比构造相对距离误差函数;然后,使用粒子群算法迭代求解运动学参数误差,并利用正余弦策略和信赖域优化对粒子群算法进行优化,降低粒子群陷入局部寻优的可能性;最后,对运动学参数进行补偿并对比验证。实验结果表明:距离平均误差由1.1601 mm减少到0.2260 mm,精度提高了80.52%;标准差由0.6582 mm减少到0.1412 mm,精度提高了78.55%,验证了所提方法的高效性和实用性。Aiming at the low absolute positioning accuracy of industrial robots,a method for identifying kinematic parameters based on binocular vision is proposed.First,a modified Denavit-Hartenberg set of parameters was used to construct the robot’s kinematic model.Next,the robot’s end was designed to travel in a multi-space sphere.A binocular vision system was used to estimate the actual distance between various endpoints and the sphere’s center;moreover,comparison of the measured distance with the theoretical distance generated the relative distance error function.The sine cosine strategy and trust region optimization were used to optimize the particle swarm optimization algorithm and reduce its possibility of falling into local optimization.Then,the kinematic parameter error was addressed iteratively using the particle swarm optimization algorithm.Finally,the kinematic parameters were compensated and validated by comparison.The experimental results demonstrate that the average distance error is reduced from 1.1601 mm to 0.2260 mm,improving accuracy by 80.52%.Moreover,the standard deviation is reduced from 0.6582 mm to 0.1412 mm,an accuracy improvement of 78.55%,demonstrating the efficiency and practicability of the proposed method.
关 键 词:机器视觉 运动学参数辨识 双目视觉 粒子群 距离误差 绝对定位精度
分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222