检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董继平 郭启全 高春东 郝蒙蒙[1,2,3] 江东 DON Jiping;CUO Qiquan;AO Chundong;AO Mengmeng;JIANG Dong(Institute of Geographic Sciences and Nature Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Laboratory of Cyberspace Geography,Chinese Academy of Sciences and The Ministry of Public Security of the People's Republic of China,Beijing 100101,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]中国科学院地理科学与资源研究所,北京100101 [2]中国科学院公安部网络空间地理学实验室,北京100101 [3]中国科学院大学资源与环境学院,北京100190
出 处:《科技导报》2023年第13期41-59,共19页Science & Technology Review
基 金:中国科学院重点部署项目(ZDRW-XH-2021-3)。
摘 要:图深度学习技术在处理非欧氏结构数据中显示了巨大潜力,大量研究工作尝试将图嵌入或图神经网络应用到漏洞检测中。梳理了基于图深度学习的漏洞检测方法,按其一般流程,归纳了数据集、图数据、图深度学习模型构建及结果评估4个主要阶段;从图深度学习漏洞检测的有效性出发,阐述了基于代码模式和基于相似性及具体应用场景中的研究成果;分析了该领域面临的挑战和未来的趋势。The recent advances made by graph-based deep learning have demonstrated its great potential in processing non-Euclidean structured data,and a large number of research efforts have attempted to apply graph embeddings or graph neural networks to vulnerability detection.This survey systematically investigates the vulnerability detection based on graph deep learning.Firstly,we summarize the four main stages of the vulnerability detection process,including data set,graph data preparation,graph deep learning model construction,and result evaluation.Then,starting from the effectiveness of graph-based deep learning vulnerability detection,we respectively expound the research results based on code patterns,code similarity and specific application scenarios.Finally,by sorting out and summarizing the existing research works,we analyze the challenges and foresee the trends in this research field.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147