基于多维自适应滤波与泊松融合的多聚焦图像融合算法  被引量:1

A Multi-focus Image Fusion Algorithm Based on Multidimensional Adaptive Filtering and Poisson Fusion

在线阅读下载全文

作  者:熊智飞 沈疆海[1] XIONG Zhi-fei;SHEN Jiang-hai(Computer Science College,Yangtze University,Jingzhou 434000,China)

机构地区:[1]长江大学计算机科学学院,荆州434000

出  处:《科学技术与工程》2023年第24期10427-10436,共10页Science Technology and Engineering

基  金:新疆维吾尔自治区创新人才建设专项自然科学计划(自然科学基金)(2020D01A132);湖北省科技示范项目(2019ZYYD016);长江大学(教育部、湖北省)非常规油气合作创新中心(UOG2020-10)。

摘  要:针对现有的多聚焦图像融合算法,在抗噪性能、图像连续性以及时间复杂度上的不足,提出了一种基于多维自适应滤波与泊松融合的多聚焦图像融合算法。首先,对统一尺度的源图像构建梯度矩阵,并设计尺度分段的多维自适应核函数对矩阵进行分割;然后,引入判定条件,对泊松重建中的图像边界进行伪边缘抑制,得到纯化后的全聚焦图像;最后,将抗噪算法与融合算法分别对比其他算法模型,进行综合比较,通过6种图像质量评价指标来评估融合性能与效果。结果表明:本文算法不仅有良好的运行效率,清晰的视觉观感,而且在评价因子上有更理想的数据结果。可见,不论主观还是客观上来看,该算法都具备明显优势。In order to solve the problem of the existing multi-focus image fusion algorithms in terms of anti-noise performance,image continuity and time complexity,a multi-focus image fusion algorithm based on multi-dimensional adaptive filtering and Poisson fusion was proposed.First,a gradient matrix was constructed for the source image of uniform scale,and a multi-dimensional adaptive kernel function of scale segment was designed to segment the matrix.Then,a judgment condition was introduced to suppress the boundary of the reconstructed image in Poisson fusion.The purified global focus image was obtained.Finally,the anti-noise algorithm and the fusion algorithm were compared with other algorithm models,and the horizontal comparison was carried out,and the fusion performance and effect were evaluated through 6 image quality evaluation indicators.The results show that the proposed algorithm not only has good operating efficiency and clear visual perception,but also has more ideal data results in evaluation factors.It can be seen that the algorithm has obvious advantages both subjectively and objectively.

关 键 词:图像融合 SOBEL算子 自适应滤波 泊松融合 伪边缘抑制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象