检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董志华 姚顽强[1] 蔺小虎 郑俊良[1] 马柏林[1] 高康洲 DONG Zhihua;YAO Wanqiang;LIN Xiaohu;ZHENG Junliang;MA Bolin;GAO Kangzhou(College of Geomatics,Xi'an University of Science and Technology,Xi'an 710054,China)
机构地区:[1]西安科技大学测绘科学与技术学院,陕西西安710054
出 处:《煤矿安全》2023年第8期241-246,共6页Safety in Coal Mines
基 金:国家自然科学基金资助项目(42201484)。
摘 要:针对煤矿井下无GNSS信号、主流激光SLAM算法易出现特征约束不足而导致退化问题,提出了一种面向煤矿井下环境的激光雷达、IMU紧耦合SLAM算法。首先,设计一种动态提取特征点方法,通过检测煤矿井下环境是否发生退化,动态调整特征点提取数量,构建丰富且良好的特征信息约束矩阵,提高位姿估计准确性;然后,利用因子图优化实现煤矿井下稳健精确的SLAM;最后,通过煤矿井下实测数据进行了广泛的试验分析。结果表明:提出的激光SLAM算法表现较好,位姿估计误差在平面方向较LIO_SAM降低了50.93%,在高程方向降低了42.13%,可为煤矿机器人智能感知、安全巡检提供了技术参考。Aiming at the problem that there is no GNSS signal in the coal mine,the state-of-the-art LiDAR SLAM algorithm is prone to degenerate due to insufficient feature constraints,a tight coupling SLAM algorithm of LiDAR and IMU for the coal mine environment is proposed.First,we design a dynamic feature point extraction method,by detecting whether there is degradation in the underground environment of coal mine to dynamically adjust the number of feature points extracted,build a rich and good feature information constraint matrix,improve the accuracy of pose estimation;then,the factor diagram optimization is used to realize the robust and accurate SLAM in the coal mine.Finally,a wide range of experimental analysis is carried out through the measured data in the coal mine.The results show that the proposed laser SLAM algorithm performs well,the pose estimation error is reduced by 50.93% in the horizontal direction and 42.13%in the vertical direction compared with LI0_SAM,it can provide technical reference for intelligent perception and safety inspection of coal mine robots.
关 键 词:煤矿机器人 激光SLAM 动态阈值 特征提取 智能感知
分 类 号:TD175[矿业工程—矿山地质测量]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30