检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎亚雨 龚婷 陈桂玲 LI Yayu;GONG Ting;CHEN Guiling(School of Mathematics,Southwest Jiaotong University,Chengdu 611756 China)
出 处:《西华大学学报(自然科学版)》2023年第5期99-104,共6页Journal of Xihua University:Natural Science Edition
基 金:国家自然科学基金资助项目(11871049,11971394,12090013);四川省科技项目(2019YJ0215)。
摘 要:反应扩散方程模型被广泛应用于描述各类动力系统。本文研究了一类具有反应扩散项、可变时滞、连续时滞脉冲的神经网络的全局指数稳定性问题。首先构造Lyapunov函数,然后利用狄利克雷边界条件对反应扩散项进行运算得到时滞脉冲不等式,结合常数变易公式,推导出了带有脉冲时滞反应扩散方程的平衡点的全局指数稳定的充分条件,最后通过一个实例对得到的结果进行了具体应用。该结果推广并改进了带有可变时滞的反应扩散神经网络系统的相关结果。Reaction diffusion equation models are widely used to describe various dynamical systems.In this paper,the global exponential stability of a class of neural networks with reaction-diffusion term,variable delay and continuous delay impulses is studied.Firstly,the Lyapunov function is constructed,and then the delay impulsive inequality is obtained by using the Dirichlet boundary condition to operate the reaction-diffusion term.Combined with the constant variation formula,the sufficient conditions for the global exponential stability of the trivial solution of the reaction-diffusion equation with impulsive delay are derived.Finally,an example is given to demonstrate the application.This result generalizes and improves the relevant results of reaction-diffusion neural network systems with variable delay.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49