检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张睿权 覃华[1] ZHANG Rui-quan;QIN Hua(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China)
机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004
出 处:《计算机工程与设计》2023年第8期2305-2311,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(51667004、61762009)。
摘 要:ResNet深度神经网络用于图像分类时,全连接层训练算法收敛性差降低了分类效果。针对此不足,提出一种模糊策略梯度算法训练ResNet。推导出ResNet全连接层权重的迭代公式,用历史梯度信息修正当前一阶小批量梯度,用模糊策略学习率更新权重,通过上下边界函数处理学习率的过大或过小而引发的迭代振荡,改善训练算法收敛性。在CINIC-10和CIFAR-100数据集上的实验结果表明,所提算法训练的ResNet分类效果优于相比较算法。特别是在综合性分类指标Kappa系数上,所提算法训练的ResNet较最新的AdaBound算法平均提高了9.29%,改进效果显著。When the ResNet depth network is used for image classification,the poor convergence of full connection layer trai-ning algorithm reduces the classification effect.To solve this problem,a fuzzy strategy gradient algorithm was proposed to train ResNet.The iterative formula of ResNet full connection layer weight was derived,the current first-order small batch gradient was modified with the historical gradient information,the weight was updated with the fuzzy strategy learning rate,and the upper and lower boundary functions were used to deal with the iterative oscillation caused by the high or low learning rate,which improved the convergence of the training algorithm.Experimental results on CINIC-10 and CIFAR-100 datasets show that the ResNet classification effect trained using the proposed algorithm is better than that using the comparative algorithms.Especially on the comprehensive classification index Kappa coefficient,the ResNet trained using the proposed algorithm is 9.29%higher than that using the latest AdaBound algorithm on average,its improvement effect is significant.
关 键 词:图像分类 全连接层 训练算法收敛性 深度神经网络 小批量梯度 模糊策略学习率 上下边界函数
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7