融合红外与可见光的实验室火焰图像分割识别  

Laboratory flame image segmentation and recognition by fusing infrared and visible light

在线阅读下载全文

作  者:李颀[1] 张冉 LI Qi;ZHANG Ran(College of Electronic Information and Artificial Intelligence,Shaanxi University of Science and Technology,Xi'an 710021,China)

机构地区:[1]陕西科技大学电子信息与人工智能学院,陕西西安710021

出  处:《液晶与显示》2023年第9期1262-1271,共10页Chinese Journal of Liquid Crystals and Displays

基  金:陕西省科技厅项目(No.S2023-YF-YBNY-0232)。

摘  要:为实现实验室火灾识别并解决因火苗小导致相机采集到的图像火焰不显著,以及火焰伴随烟雾遮挡影响分割识别精度的问题,提出一种改进的语义感知的实时热红外和可见光图像融合分割网络。通过融合热红外与可见光图像,提供热辐射信息以增强可见光图像中因烟雾遮挡而降低的光谱信息以及火焰燃烧前期的显著性,完成对实验室烟雾遮挡下火焰以及火焰燃烧前期小火苗的分割。对融合网络中的梯度残差密集块(GRDB)增加中间特征传输块(IFTB)并引入权重块,减少融合时火焰图像的信息损失,在增强火焰图像显著性的同时以最少内容损失为基准还原可见光图像结构信息。在Deeplabv3+语义分割网络中添加基于梯度变换的边缘提取模块(EEM),增强融合图像中明暗变换显著的火焰烟雾图像边缘信息,减少烟雾遮挡对火焰分割的影响,提高火焰分割识别精度。实验结果显示,通过融合可见光与热红外图像使火焰燃烧前期图像的火焰检测分割识别精度得到了提升,改进的火焰分割网络在自采数据集中的平均交并比为91.27%,分割效率为11.96 FPS,表明改进的融合分割网络对实验室火焰烟雾分割识别的效果有明显提升,对于实验室火焰烟雾检测具有现实应用价值。In order to realize laboratory fire recognition and solve the problems that the flame is not significant in the image collected by the camera due to the small fire,and the flame with smoke occlusion affects the accuracy of segmentation and recognition,an improved semantic aware real-time thermal infrared and visible image fusion segmentation network is proposed.The thermal radiation information is provided to enhance the spectral information reduced by smoke occlusion in the visible light image,as well as the significance of the flame in the early stage of combustion,and the segmentation of the flame under the laboratory smoke occlusion and the small flame in the early stage of flame combustion is completed.The intermediate feature transfer block(IFTB)is added to the gradient residual dense block(GRDB)in the fusion network,and the weight block is introduced to reduce the information loss of the flame image during fusion,and the visual image structure information is restored with the minimum content loss as the benchmark while enhancing the saliency of the flame image.The edge extraction module based on gradient transformation(EEM)is added to the Deeplabv3+semantic segmentation network to enhance the edge information of flame and smoke images with significant light and dark transformation in the fusion image,reduce the influence of smoke occlusion on flame segmentation,and improve the accuracy of flame segmentation and recognition.The experimental results show that the accuracy of flame detection segmentation and recognition in the early stage of flame combustion is improved by fusing visible light and thermal infrared images.The average intersection over union ratio of the improved flame segmentation network in the self-collected data set is 91.27%,and the segmentation efficiency is 11.96 FPS.The improved fusion segmentation network significantly improves the effect of laboratory flame and smoke segmentation and recognition,and has practical application value for laboratory flame and smoke detection.

关 键 词:火焰烟雾检测 图像融合 语义分割 IFTB 边缘提取 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象