检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑俊褒[1] 张旭[1] 马腾洲 Zheng Junbao;Zhang Xu;Ma Tengzhou(School of Computer Science and Technology,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China;Shanghai Customs)
机构地区:[1]浙江理工大学计算机科学与技术学院,浙江杭州310018 [2]中国上海海关
出 处:《计算机时代》2023年第9期10-13,共4页Computer Era
基 金:国家重点研发计划项目(项目编号:2019YFC0810900)。
摘 要:针对时间序列预测方法训练复杂、迁移预测能力差等问题,提出一种自适应预测方法。先根据预测误差和当前值确定下一时刻预测值的范围,再结合短期历史趋势确定最终预测值。得到的当前预测值代入下一轮循环中继续预测,通过不断“预测-校正-预测”循环实现对数据预测。最后利用金融、风力等时序数据,LSTM、SVM、ARIMA、MA等经典时间序列预测算法在预测精度、迁移预测能力、运算速度等方面做了对比。Aiming at the problems of complex training and poor transfer forecasting ability of time series forecasting method,an adaptive forecasting method is proposed.The range of the next forecast value is first determined according to the forecast error and the current value,and then the final forecast value is determined by combining the short-term historical trend.The obtained forecast value is then substituted into the next cycle to continue forecasting,and the data forecasting is achieved through a continuous"forecast-correction-forecast"cycle.Using the time series data such as financial and wind power,the proposed algorithm is compared with LSTM,SVM,ARIMA,MA and other classical time series forecasting algorithms in terms of forecasting accuracy,transfer forecasting ability and computing speed.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.95.159