基于改进yolov4-tiny的地铁受电弓燃弧检测方法  被引量:3

Arcing detection method of metro pantograph based on improved yolov4-tiny

在线阅读下载全文

作  者:艾生永 丁建明[1] 张青松[1] AI Shengyong;DING Jianming;ZHANG Qingsong(State Key Laboratory of Rail Transit Vehicle System,Southwest Jiaotong University,Chengdu,Sichuan 610031,China)

机构地区:[1]西南交通大学轨道交通运载系统全国重点实验室,四川成都610031

出  处:《机车电传动》2023年第4期83-89,共7页Electric Drive for Locomotives

基  金:国家自然科学基金项目(51875481)。

摘  要:地铁受电弓的燃弧会加剧受电弓滑板和接触网磨损,严重危害轨道交通安全。文章针对地铁车辆受电弓燃弧检测存在强光干扰和背景多变的问题,提出了一种基于yolov4-tiny模型改进的燃弧检测方法。为提升小目标检测能力,该方法在yolov4-tiny原有两个尺度的预测分支的基础上,添加第三尺度的预测分支以实现小燃弧在浅层网络中的定位,在主干网络后增加RFB(Receptive Field Block)模块以扩大网络的感受野,增强模型的特征提取能力。结果表明,改进的模型在测试集上的平均精度值(PAP)比yolov4-tiny提升了7.8个百分点,达到了98.2%,燃弧的定位效果与yolov4相当,但速度得到了极大的提升,单张图片的推理速度仅为6.5 ms,能有效、准确地完成地铁车辆中的受电弓燃弧检测任务。Arcing on metro pantographs contribute to the accelerated wear of pantograph strips and the catenary,imposing a serious safety risk to rail transit.For the problem of strong light interference and variable background in pantograph arcing detection for metro vehicles,an arcing detection method based on an improved yolov4-tiny model is proposed.In order to improve the detection ability of small targets,this method incorporated a third-scale prediction branch to the original two-scale prediction branches of yolov4-tiny,to enable the positioning of small arcs in the shallow network.Moreover,a receptive field block(RFB)module was embedded beneath the backbone network,to expand the network′s receptive field and enhance the model′s feature extraction ability.The test results show the average precision(PAP)of the improved model on the test set is increased to 98.2%,marking an improvement of 7.8 percentage points over yolov4-tiny.Despite yielding similar positioning effect for arcs,the improved model works at significantly higher speeds than yolov4,enabling inference speed of a single image in only 6.5 ms.The proposed method is proven effective and accurate in fulfilling the arcing detection task for pantographs of metro vehicles.

关 键 词:地铁车辆 燃弧识别 目标检测 YOLO 深度学习 

分 类 号:U231[交通运输工程—道路与铁道工程] U225

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象