检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫俊辉 Yan Junhui(School of Mathematics and Information Technology,Yuncheng University,Yuncheng 044000,China)
机构地区:[1]运城学院数学与信息技术学院,运城044000
出 处:《现代计算机》2023年第14期62-65,73,共5页Modern Computer
摘 要:如何为用户提供感兴趣的个性化推荐图书商品向来都是智慧图书馆最核心的难题之一。因此,利用优质的推荐算法构建推荐系统就变得尤为重要。基于多维关系和用户聚类两个方面构建推荐算法,在充分考虑用户之间相关关系和图书商品之间相关关系的基础上,不断更新“用户-图书商品”二维矩阵,使其数值更加合理和真实。随后使用k均值聚类方法聚拢高相关性用户。最后在类内选取目标用户实现个性化图书商品推荐。实验结果表明,该推荐算法能取得较高的评价指标F1值,即算法更加优质和有效。How to provide users with personalized recommended books has always been one of the most concerned problems of intelligent library.Therefore,it is very important to use high quality recommendation algorithm to build recommendation system.The recommendation algorithm is constructed from the two aspects of multidimensional relationship and user clustering.On the basis of fully considering the correlation between users and the relationship between books and commodities,the two‑dimensional matrix of“user‑book commodities”is constantly updated to make its value more reasonable and real.Then,the K‑means clustering method was used to gather high correlation users.Finally,select target users within the class to realize personalized book product recommendation.The experimental results show that the recommendation algorithm can obtain a higher value of the evaluation index F1,and the algorithm is more high‑quality and effective.
关 键 词:智慧图书馆 多维关系 用户聚类 个性化 推荐系统
分 类 号:G252[文化科学—图书馆学] TP391.3[自动化与计算机技术—计算机应用技术] G250.7[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7