检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐鸣 王爱元[1] 朱振田 TANG Ming;WANG Aiyuan;ZHU Zhentian(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出 处:《电机与控制应用》2023年第9期63-69,共7页Electric machines & control application
摘 要:为了提高电机轴承故障诊断的准确率,针对电机轴承故障不稳定的振动信号及故障特征提取困难问题,提出了一种基于变分模态分解(VMD)能量熵与卷积神经网络(CNN)相结合的电机轴承故障诊断方法。为了使故障的特征更精确地体现出来,采取三维度的能量熵提取办法,将轴承故障分为内圈磨损、外圈磨损和保持架断裂三类,然后每个类别再细分为负载为0%、25%和50%三种情况,共9种情况。利用VMD方法将故障信号分解得到内禀模态函数(IMF)的分量并提取各个维度IMF的能量熵值从而构成特征向量。结果表明该方法可以有效提高故障诊断正确率。In order to improve the accuracy of motor bearing fault diagnosis,and aiming at the problem of unstable vibration signals and the dfficulty in extracting fault feature of motor bearing fault,a motor bearing fault diagnosis method based on the combination of variational mode decomposition(VMD)energy entropy and convolutional neural network(CNN)is proposed.In order to reflect the characteristics of faults more accurately,a three-dimensional energy entropy extraction method is adopted to divide the bearing faults into three categories,namely,inner ring wear,outer ring wear and cage fracture.Then each category is subdirided into three cases with loads of 0%,25%and 50%,for a total of 9 cases.Firstly,the VMD method is used to decompose the fault signal into components of the intrinsic mode function(IMF)and the energy entropy of each dimension IMF is extracted to form the feature vector.The results show that the method can effectively improve the accuracy of fault diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222