检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋华兵 SONG Huabing(School of Mathematics and Statistics,Zhaoqing University,Zhaoqing,Guangdong 526061,China)
出 处:《肇庆学院学报》2023年第5期74-79,共6页Journal of Zhaoqing University
摘 要:由于Riccati方程为非线性方程,常用的初等积分方法难以获得其解析解,但如果知道Riccati方程一个特解,则可通过变换将其简化为一阶线性非齐次微分方程求解.文章以实例形式分析了一阶线性微分方程与Riccati方程之间存在相同特解的情况,在求解思路上,提出了将一阶线性微分方程作为Riccati方程求解的引导方程,分析了引导方程与Riccati方程之间存在共同特解的条件,给出了寻求可解Riccati方程的方法,并通过示例验证了此方法的可行性.Since the Riccati equation is a nonlinear equation,it is difficult to obtain its exact solution by the usual elementary integral method.However,if one special solution of Riccati equation is known,it can be simpli-fied to a first-order linear non-homogeneous differential equation by transformation.In this paper,the same spe-cial solutions between the first-order linear differential equation and the Riccati equation are analyzed with an ex-ample.In the solution of Riccati equation,the first order linear differential equation is considered as the leading equation of Riccati equation.The condition for the existence of the same special solution between the leading equation and the Riccati equation is analyzed,and a method for solving Riccati equation is given.The feasibili-ty is verified by examples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.130