检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王煜尘 祝标 郭井学 窦银科[1] 姚旭 孙阳 Wang Yuchen;Zhu Biao;Guo Jingxue;Dou Yinke;Yao Xu;Sun Yang(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Polar Research Institute of China,Shanghai 200136,China)
机构地区:[1]太原理工大学电气与动力工程学院,山西太原030024 [2]中国极地研究中心(中国极地研究所),上海200136
出 处:《极地研究》2023年第3期392-404,共13页Chinese Journal of Polar Research
基 金:南极中山雪冰和空间特殊环境与灾害国家野外科学观测研究站(121163000000190015)资助。
摘 要:启发式算法被广泛用于移动巡检单元的路径规划中。然而在一些特殊场合(例如南极中山站),有限的通信带宽、能源和计算能力要求移动巡检单元在路径规划算法中更有效率。为了解决上述困难,本研究提出了1个网络交换和分布式通信设施的设计方案,并将其作为实现数字孪生传感网络的基础。同时,本研究提出了1种改进型灰狼优化的路径规划算法,结合联邦学习机制,以提高路径规划算法的效率,减少资源消耗。通过一系列的仿真研究和南极中山站现场试验,验证了该算法在启发式全局路径规划、规划成本评估和区域动态路径规划方面取得了良好的性能。本研究设计的硬件平台功能符合实际任务要求,新型启发式路径规划算法优于同类其他算法,联邦学习机制提高了规划算法中参数设置的效率,算法模型使南极中山站移动巡检单元的路径规划更加高效和可靠。Heuristic algorithms are widely used in path planning for mobile units.However,in specific situations(e.g.,Zhongshan Station in Antarctic),restrictions in communication bandwidth,available energy,and computing power require more efficiency and independence from the mobile units to achieve their path-planning tasks.This paper proposes an improved grey wolf-optimized path-planning algorithm and a federated learning mechanism to improve the path-planning task efficiency and reduce resource consumption.A design solution for a network-switching and distributed communication facility is presented,then used as the basis for a digital twin-sensing network.Experimental results show that the hardware platform functioned in compliance with the actual task requirements,that the new heuristic path planning algorithm outperformed other algorithms in its class,and that the federated learning mechanism improved the parameter setting efficiency in the planning algorithm.The proposed model demonstrably improved the path-planning efficiency of mobile units at the Antarctic research stations.Moreover,a series of simulations and field experiments at Zhongshan Station confirmed that the proposed algorithm achieved good performance in global heuristic path planning,planning cost evaluation,and regional dynamic path planning.
分 类 号:P941.61[天文地球—自然地理学] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7