基于改进YOLOX算法的铝铸件表面成孔缺陷检测研究  

Detection of Hole-forming Defects on A luminum Casting Based on Optimized YOLOX

在线阅读下载全文

作  者:胡佳琪 王成军[2] 杨超宇[2] 胡鹏 Hu Jiaqi;Wang Chengjun;Yang Chaoyu;Hu Peng(School of Computer Science and Engineering,Anhui University of Science and Technology;School of Artificial Intelligence,Anhui University of Science and Technology)

机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001 [2]安徽理工大学人工智能学院,安徽淮南232001

出  处:《特种铸造及有色合金》2023年第9期1205-1209,共5页Special Casting & Nonferrous Alloys

基  金:安徽省自然科学基金资助项目(2208085ME128)。

摘  要:针对铸件在铸造过程中易出现漂芯、漏芯等成孔类缺陷,采用视觉检测时铸件与背景特征相近,产生特征网络提取能力欠缺的问题,提出改进YOLOX的铝铸件表面成孔缺陷检测方法。构建成孔缺陷数据集;引入SE注意力机制,提升特征重用率;替换原卷积块为CBH,稳定特征拟合过程;完善CIOU边界框回归损失函数,加速模型收敛。试验证明,改进模型在铝铸件缺陷数据集的平均检测精度提升至97.13%,单图推理速度为0.0162 s,可快速准确地完成铝铸件表面缺陷检测。Aiming at the problem of floating cores and missing cores that commonly occurs during the casting process,and the lack of feature network extraction capabilities due to the similarity of casting and background features when visual inspection is used,an optimized YOLOX method for detecting pore-forming defects on the surface of aluminum castings was proposed.A hole defect dataset was constructed,and SE attention mechanism was introduced to improve feature reuse rate.Meanwhile,original convolution block was replaced by CBH to stabilize feature fitting process,and CIOU bounding box regression loss function was modified to accelerate model convergence.The results indicate that the average detection accuracy of optimized model in the aluminum casting defect dataset is increased to 97.13%,and the single-image reasoning speed is 0.0162 s,which can quickly and accurately detect aluminum casting surface defects.

关 键 词:铝铸件 表面缺陷检测 端到端 深度学习 注意力机制 

分 类 号:T391[一般工业技术] TG245[金属学及工艺—铸造] TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象