检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙妍 宋雪桦[1] 陈静[1] 蒋思玮 SUN Yan;SONG Xuehua;CHEN Jing;JIANG Siwei(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013)
机构地区:[1]江苏大学计算机科学与通信工程学院,镇江212013
出 处:《计算机与数字工程》2023年第6期1217-1222,1255,共7页Computer & Digital Engineering
基 金:国家重点研发计划(编号:2017YFC1600804);国家自然科学基金项目(编号:61902156);江苏省自然科学基金项目(编号:BK20180860)资助。
摘 要:针对储粮害虫检测中害虫目标较小,且存在重叠和遮挡现象,检测难度大的问题,提出了基于改进YOLOv4的储粮害虫检测算法。首先,该算法以多尺度检测的YOLOv4为基础算法,满足了小目标检测的要求;其次,引入K-means算法,对储粮害虫数据集聚类分析,调整先验框大小,加强对储粮害虫目标的检测能力;最后,在YOLOv4主干网络中加入空间金字塔池化结构,增加感受野,增加网络的特征提取能力。实验结果表明,在储粮害虫检测中,论文提出的算法的平均精度均值达到93.99%,与未改进的YOLOv4算法相比提高了4.49%,且检测速度达到了26.36帧/s。与YOLOv3相比,改善了储粮害虫的漏检情况。In order to solve the problems of small pest targets,overlapping and shielding,and difficult detection in the detec-tion of stored grain pests,a stored grain pest detection algorithm based on improved YOLOv4 is proposed.Firstly,the algorithm is based on the multi-scale detection of YOLOv4,which meets the requirements of small target detection.Secondly,the K-means al-gorithm is introduced to cluster the stored grain pest data set,and the size of the prior box is adjusted to enhance the detection abili-ty of stored grain pest targets.Finally,the spatial pyramid pooling structure is added to the backbone network of YOLOv4 to in-crease the receptive field,enhance the network feature extraction ability.The experimental results show that in the detection of stored-grain pests,the mean average accuracy of the proposed algorithm reaches 93.99%,which is 4.49%higher than the unim-proved YOLOv4 algorithm,and the detection speed reaches 26.36 frames per second.Compared with YOLOv3,the missed detec-tion effect of stored grain pests is improved.
关 键 词:储粮害虫 YOLOv4 K-MEANS 空间金字塔池化
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249