检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李健 翟亚红[1] 徐龙艳[1] Li Jian;Zhai Yahong;Xu Longyan(School of Electrical&Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)
机构地区:[1]湖北汽车工业学院电气与信息工程学院,湖北十堰442002
出 处:《湖北汽车工业学院学报》2023年第3期58-62,共5页Journal of Hubei University Of Automotive Technology
基 金:湖北省教育厅科研计划重点项目(D20211802);湖北省科技厅重点研发计划项目(2022BEC008)。
摘 要:针对城市空对地模型中无人机与地面用户通信视线连接受阻的问题,提出了基于深度强化学习的无人机通信速率优化方案。利用智能反射面(reconfigurable intelligent surface,RIS)辅助无人机通信,采用双深度Q网络(double deep Q-Learning,DDQN)算法联合RIS相移和无人机的3D轨迹优化无人机的通信速率,在自建仿真平台上对该方案进行验证。结果表明:与RIS随机相移的DDQN方案、未部署RIS的DDQN方案及RIS相移优化的决斗深度Q网络方案相比,该方案在无人机飞行周期内的平均吞吐量,分别提高了38.61%、30.03%、53.97%。Since the communication line of sight between unmanned aerial vehicles(UAVs)and ground users is blocked in the urban air-to-ground model,an optimization scheme of UAV communication rate based on deep reinforcement learning was proposed.The reconfigurable intelligent surface(RIS)was used to assist the UAV communication,and the double deep Q-learning(DDQN)algorithm was used to combine the RIS phase shift and the 3D trajectory of the UAV to optimize the communication rate of the UAV.The scheme was verified on the self-built simulation platform.The experimental results show that the average throughput of the proposed scheme in the UAV flight cycle is 38.61%,30.03%,and 53.97%higher than that of the DDQN scheme with RIS random phase shift,the DDQN scheme without RIS deployment,and the dueling DQN scheme optimized by RIS phase shift,respectively.
关 键 词:通信速率优化 DDQN算法 无人机 智能反射面 3D轨迹优化
分 类 号:TN929.5[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7