检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕拥 张宏武 LV Yong;ZHANG Hongwu(School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,China)
机构地区:[1]北方民族大学数学与信息科学学院,宁夏银川750021
出 处:《应用数学》2023年第4期1007-1024,共18页Mathematica Applicata
基 金:Supported by the NSF of Ningxia(2022AAC03234);the NSF of China(11761004);the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09);the Postgraduate Innovation Project of North Minzu University(YCX22094)。
摘 要:本文研究一类时间分数阶扩散方程柯西问题,该问题是严重不适定的.基于傅里叶截断理论,构造了一种迭代方法来克服其不适定性,并且通过正则化参数的先验和后验选取规则获得了正则化方法的收敛性估计.最后,通过数值实验验证了该方法的有效性.数值结果表明,该方法求解时间分数阶扩散方程柯西问题是稳定可行的.We consider a Cauchy problem of the time-fractional diffusion equation,which is seriously ill-posed.This paper constructs an iterative regularization method based on Fourier truncation to overcome the ill-posedness of considered problem.And then,under the a-prior and a-posterior selection rules of regularization parameter,the convergence estimates of the proposed method are derived.Finally,we verify the effectiveness of our method by doing some numerical experiments.The corresponding numerical results show that the proposed method is stable and feasible in solving the Cauchy problem of time-fractional diffusion equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49