基于RF-PCCs和RBF的焦炭质量预测模型研究  

Study on Prediction Model for Coke Quality Based on RF-PCCs and RBF

在线阅读下载全文

作  者:李芹芹 宋宝宇 庞克亮 王越 LI Qinqin;SONG Baoyu;PANG Keliang;WANG Yue(Ansteel Beijing Research Institute Co.,Ltd.,Beijing 102211,China)

机构地区:[1]鞍钢集团北京研究院有限公司,北京102211

出  处:《鞍钢技术》2023年第5期12-16,共5页Angang Technology

摘  要:在炼焦生产实践中,焦炭质量预测模型的准确性对降低配煤成本和优质炼焦煤的消耗具有重要作用。为此,基于径向基函数神经网络模型,通过随机森林和皮尔逊相关系数算法共同进行特征选择,建立了焦炭质量预测模型,并以某钢厂炼焦部生产焦炭的各项实际数据进行仿真。结果表明,该模型预测精度高,泛化能力强,可为炼焦生产提供一定的理论依据。In the practice of coking production,the accuracy in terms of the prediction model for coke quality plays an important role in reducing the cost of coal blending and the consumption of high-quality coking coal.Therefore,based on radial basis function neural network model,the prediction model for coke quality was established through carrying out common feature selections by random forest and Pearson correlation coefficient algorithm.After that the actual data on coke-making from coking department of a steel plant in operation were simulated depending on the model.The simulation results showed that the model had high prediction accuracy and strong generalization ability,which could provide a certain theoretical basis for coking production.

关 键 词:焦炭质量预测 随机森林 皮尔逊相关系数 径向基函数 

分 类 号:TQ52[化学工程—煤化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象