检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑琰睿 杨林剑 李曙光[1] 张永炬[3] ZHENG Yanrui;YANG Linjian;LI Shuguang;ZHANG Yongju(School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou 310000,China;Intelligent Manufacturing Center,Zhejiang Weixing New Building Materials Co.,Ltd.,Taizhou,Zhejiang 318000,China;Intelligent Manufacturing Academy,Taizhou University,Taizhou,Zhejiang 318000,China)
机构地区:[1]浙江科技学院自动化与电气工程学院,杭州310000 [2]浙江伟星新型建材股份有限公司智能制造中心,浙江台州318000 [3]台州学院智能制造学院,浙江台州318000
出 处:《林业资源管理》2023年第4期150-160,共11页Forest Resources Management
基 金:浙江省基础公益研究计划项目“基于高灵敏光学弱磁探测的管道缺陷无损云检测系统应用基础研究”(LGF22F010009)。
摘 要:为了第一时间发现森林火灾,避免因森林火灾造成严重后果,提出以森林火灾烟雾为主要目标的检测模型YOLO-SCW,在YOLOv7的基础上,引入SPD-Conv层,以减小特征提取过程中小目标特征缺失的问题。之后在检测头金字塔池化部分增加坐标准意力机制模块,通过将位置信息编码到通道中,增加了模型对目标的关注度,并且减少了背景对检测效果的干扰。最后,通过WIoU矩形框损失函数,提高了预测框的回归速度与精度。在测试过程中,改进后的YOLO-SCW较YOLOv7模型mAP提高了9.1%,并减少了误检与漏检现象,证明YOLO-SCW有着更好的特征提取能力与泛化能力,对森林火灾烟雾监测任务表现出色。In order to detect forest fires in the first time and avoid serious consequences caused by forest fires,a detection model YOLO-SCW with forest fire smoke as the main target is proposed,and the SPD-Conv layer is introduced based on YOLOv7 to reduce the problem of missing features of small targets in the feature extraction process.Then,the Coordinate Pay module is added in the pooling part of the detection head pyramid,and the location information is encoded into the channel,which increases the attention of the modelto the target and reduces the interference of the background on the detection effect.Finally,the WIoU rectangular box loss function is used to improve the regression speed and accuracy of the prediction box.During the test,the improved YOLO-SCW increased by 9.1%compared with the mAP of the YOLOv7 model,and reduced the false detection and missed detection,which proved that YOLO-SCW has better feature extraction and generalization ability,and has excellent performance for forest fire smoke detection tasks.
关 键 词:YOLO-SCW 森林火灾烟雾监测 目标检测 深度学习 损失函数
分 类 号:S762.2[农业科学—森林保护学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4