检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵焕平[1] ZHAO Huan-ping(School of Computer and Software,Nanyang Institute of Technology,Nanyang 473004,China)
机构地区:[1]南阳理工学院计算机与软件学院,河南南阳473004
出 处:《南阳理工学院学报》2023年第4期35-39,共5页Journal of Nanyang Institute of Technology
基 金:河南省科技攻关项目(142102210554)。
摘 要:为了保证煤矿安全开采,并提高煤矿瓦斯涌出量的预测精度,提出了改进思维进化算法优化BP神经网络的模型预测新方法。在思维进化算法中加入精英反向学习策略增加算法的全局搜索能力,在趋同操作中引入粒子群算法避免重复搜索,以此实现对BP神经网络的初始权值和阈值的全局寻优,并通过矿井监测到的各项历史数据进行验证。结果表明:与BP神经网络模型和MEA-BP神经网络模型相比较,该模型的预测精度更高,泛化能力更强。该模型的平均相对变动值为0.00116,平均相对误差为0.81%,均方根误差为0.0576,有效提高了对瓦斯涌出量的预测精度,提升了煤矿安全生产技术。In order to improve coal mine safety and mining technology and improve the prediction accuracy of coal mine gas emission,it proposed A new mothod of model prediction was proposed based on BP neural network by improved mink evolutionary algorithm(MEA).The elite opposition-based learning was added to MEA to enhance the global search ability.The particle swarm optiomization algorithm was introduead to avoid repeated searches.In this way,it realized the global optimization of the weights and threshods of BP neural network and verified through various historicla datas monitored by the mine.The results showed that this model had higher pediction accuracy and stronger generalization ability compared with BP neural network model and MEA-BP neural network model.The average relative variance of this model was 0.0016,average relative error was 0.81%,and root mea square error was 0.0576,which effectively improved the prediction accuracy of gas emission and improved the coal mine safety production technology.
关 键 词:瓦斯涌出量 思维进化算法 精英反向学习 粒子群算法 BP神经网络
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28