检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李志兵 肖健梅[1] 王锡淮[1] LI Zhibing;XIAO Jianmei;WANG Xihuai(Department of Electrical Automation,Shanghai Maritime University,Shanghai 201306)
出 处:《电气工程学报》2023年第3期232-241,共10页Journal of Electrical Engineering
基 金:国家自然科学基金资助项目(71771143)。
摘 要:当前基于数据驱动的深度学习算法在电力系统暂态分析领域被广泛应用,但是实际中电力系统测得的数据样本中暂态失稳的情况较少并且对失稳样本的重视不足,导致分类模型的抗干扰性、泛化能力较弱,影响整个模型的评估性能。针对此问题,提出一种基于多粒度邻域粗糙集和改进双向长短期记忆网络(IM-Bi-LSTM)的电力系统暂态稳定评估方法。首先采用邻域粗糙集在不同粒度级别下寻找最优的约简子集,再利用Bi-LSTM神经网络完成对特征子集进行时序信息的提取,并且在模型中引入注意力机制,对与失稳样本相关的特征增加更多的权重;通过焦点损失函数,引入权重系数调整模型训练的倾向性,解决失稳样本与暂态稳定样本间的不平衡问题,提高模型的评估性能。在IEEE10机39节点系统上的试验结果表明,相较于其他算法,所提方法的分类精度更好、结果更稳定。At present,data-driven deep learning algorithm is widely used in the field of power system transient analysis,but in practice,there are few transient instability in the measured data samples of power system,and insufficient attention is paid to the instability samples,resulting in the weak anti-interference and generalization ability of the classification model,which affects the evaluation performance of the whole model.To solve this problem,a power system transient stability assessment method based on multi-granularity neighborhood rough set and improved bi-directional long-short-term memory network(IM-Bi-LSTM)is proposed.Firstly,the neighborhood rough set is used to find the optimal reduction subset at different granularity levels,and then the BiLSTM neural network is used to extract the timing information of the feature subset,and the attention model is introduced into the model to add more weights to the features related to the unstable samples.Through the focus loss function,the weight coefficient is introduced to adjust the tendency of model training,solve the imbalance between unstable samples and transient stability samples,and improve the evaluation performance of the model.The experimental results on the IEEE 10 machine 39 bus system show that compared with other algorithms,the proposed method has better classification accuracy and more stable results.
关 键 词:电力系统 邻域粗糙集 双向长短期记忆网络 注意力机制 焦点损失 暂态稳定评估
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.212.53