时间分数阶Swift-Hohenberg方程的一种残差幂级数解法  

Residual Power Series Method for Solving the Time-Fractional Swift-Hohenberg Equation

在线阅读下载全文

作  者:仝秋娟 臧永祯 张建科 TONG Qiu-juan;ZANG Yong-zhen;ZHANG Jian-ke(School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Communication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)

机构地区:[1]西安邮电大学理学院,陕西西安710121 [2]西安邮电大学通信与信息工程学院,陕西西安710121

出  处:《数学的实践与认识》2023年第9期175-185,共11页Mathematics in Practice and Theory

基  金:国家自然科学基金(11601420);陕西省自然科学基础研究计划面上项目(2017JM1015)。

摘  要:Swift-Hohenberg方程是一个用来描述卷波的Rayleigh-Benard不稳定性的简单模型.利用残差幂级数法求时间分数阶Swift-Hohenberg方程的近似解析解,用该方法求得幂级数展开为五项时方程的解.首先将该方程用幂级数形式表示,然后取前k项,利用残差为0求得其幂级数展开为k项时的近似解析解.通过实验结果的比较,可以得到幂级数的展开项数越多求得的近似解析解越精确,残差幂级数法可以有效地求解时间分数阶Swift-Hohenberg方程的近似解析解.Swift-Hohenberg equation is a simple model for the Rayleigh-Benard convective instability of roll waves.In this paper,the residual power series method is used to find the approximate analytical solution of time-fractional Swift-Hohenberg equation and obtain the solution when the power series is expanded into five terms.Firstly,the equation is expressed in the form of power series,and then the first k terms is used to obtain the approximate analytical solution according to the residual is zero.By comparing the experimental results,the more the number of expansion terms of the power series can be obtained,the more accurate the solution is.The residual power series method can effectively solve the approximate solution of time-fractional Swift-Hohenberg equation.

关 键 词:SWIFT-HOHENBERG方程 残差幂级数法 CAPUTO导数 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象