检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾安[1] 罗百荣 潘丹 容华斌 曹剑锋 张小波[3] 林靖 杨洋[5] 刘军[6] ZENG An;LUO Bairong;PAN Dan;RONG Huabin;CAO Jianfeng;ZHANG Xiaobo;LIN Jing;YANG Yang;LIU Jun(School of Computers,Guangdong University of Technology,Guangzhou 510006,P.R.China;School of Electronics and Information Engineering,Guangdong University of Technology and Education,Guangzhou 510665,P.R.China;School of Automation,Guangdong University of Technology,Guangzhou 510006,P.R.China;Classroom Management Center,Guangdong University of Technology,Guangzhou 510006,P.R.China;Information Management Department,Guangdong Provincial People's Hospital,Guangzhou 510080,P.R.China;Neurology Department,Affiliated Second Hospital of Guangzhou Medical University,Guangzhou 510260,P.R.China)
机构地区:[1]广东工业大学计算机学院,广州510006 [2]广东技术师范大学电子与信息学院,广州510665 [3]广东工业大学自动化学院,广州510006 [4]广东工业大学课室管理中心,广州510006 [5]广东省人民医院信息管理处,广州510080 [6]广州医科大学附属第二医院神经内科,广州510260
出 处:《生物医学工程学杂志》2023年第5期852-858,共7页Journal of Biomedical Engineering
基 金:国家自然科学基金项目(61976058);广州市科技计划项目(202103000034,202206010007,202002020090);广东省科技计划项目(2021A1515012300,2019A050510041,2021B0101220006);云南省重大科技专项(202102AA100012)。
摘 要:阿尔茨海默症(AD)是一种不可逆转的大脑神经退化性疾病,会损害患者记忆力和认知能力。因此,AD诊断具有重要意义。大脑感兴趣区域(ROI)之间往往是多个区域以非线性的方式协同交互,充分利用此类非线性高阶交互特征有助于提高AD诊断分类的准确性。为此,提出基于非线性高阶特征提取和三维超图神经网络相结合的AD计算机辅助诊断框架。首先针对ROI数据使用基于径向基函数核的支持向量机回归模型训练出基估计器,再通过基于基估计器的递归特征消除算法提取功能性磁共振成像(fMRI)数据中的非线性高阶特征,进而将特征构造成超图,最后基于fMRI数据的四维时空特性搭建超图卷积神经网络模型来进行分类。阿尔茨海默症神经影像倡议(ADNI)数据库上的实验结果表明,所提框架在AD/正常对照(NC)分类任务上的效果相较于Hyper Graph Convolutional Network(HyperGCN)框架提高了8%,相较于传统二维线性特征提取方法提高了12%。综上,本文框架在AD分类效果上较主流深度学习方法有所提升,可为AD计算机辅助诊断提供有效依据。I Alzheimer's disease(AD)is an irreversible neurodegenerative disorder that damages patients’memory and cognitive abilities.Therefore,the diagnosis of AD holds significant importance.The interactions between regions of interest(ROIs)in the brain often involve multiple areas collaborating in a nonlinear manner.Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis.To address this,a framework combining nonlinear higher-order feature extraction and three-dimensional(3D)hypergraph neural networks is proposed for computer-assisted diagnosis of AD.First,a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator.Then,a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging(fMRI)data.These features were subsequently constructed into a hypergraph,leveraging the complex interactions captured in the data.Finally,a four-dimensional(4D)spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification.Experimental results on the Alzheimer's Disease Neuroimaging Initiative(ADNI)database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network(HyperGCN)framework by 8%and traditional two-dimensional(2D)linear feature extraction methods by 12%in the AD/normal control(NC)classification task.In conclusion,this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods,providing valuable evidence for computer-assisted diagnosis of AD.
关 键 词:阿尔茨海默症 分类 功能性磁共振数据 感兴趣区域 非线性高阶特征 超图卷积神经网络
分 类 号:R749.16[医药卫生—神经病学与精神病学] R445.2[医药卫生—临床医学] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4