检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彩云 郑增亮 蔡晓琼 黄继汉(综述)[2] 苏前敏(审校)[1] WANG Caiyun;ZHENG Zengliang;CAI Xiaoqiong;HUANG Jihan;SU Qianmin(College of Electrical and Electronic Engineering,Shanghai University OfEngineering Science,Shanghai 201620,P.R.China;Center for Drug Clinical Research,Shanghai University of Chinese Medicine,shanghai 201203,P.R.China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海中医药大学药物临床研究中心,上海201203
出 处:《生物医学工程学杂志》2023年第5期1040-1044,共5页Journal of Biomedical Engineering
基 金:“十三五”国家科技重大专项(2018ZX09711001-009-011)。
摘 要:随着医学信息技术与计算机科学的蓬勃发展,医疗服务行业逐渐从信息化向智慧化过渡。医学知识图谱在知识问答和智能诊断等智能医疗应用中发挥了重要作用,是推进智慧医疗的关键技术,也是医疗信息智能化管理的基础。为了充分发掘知识图谱在医学领域中的巨大潜力,本文从药物间关系发现、辅助诊断、个性化推荐、决策支持和智能预测这五个方面展开,介绍了医学知识图谱的最新研究进展,并结合当前医学知识图谱面临的挑战与问题提出相关建议,为推进医学知识图谱广泛应用提供参考。With the booming development of medical information technology and computer science,the medical services industry is gradually transiting from information technology to intelligence.The medical knowledge graph plays an important role in intelligent medical applications such as knowledge questions and answers and intelligent diagnosis,and is a key technology for promoting wise medical care and the basis for intelligent management of medical information.In order to fully exploit the great potential of knowledge graphs in the medical field,this paper focuses on five aspects:inter-drug relationship discovery,assisted diagnosis,personalized recommendation,decision support and intelligent prediction.The latest research progress on medical knowledge graphs is introduced,and relevant suggestions are made in light of the current challenges and problems faced by medical knowledge graphs to provide reference for promoting the wide application of medical knowledge graphs.
分 类 号:R-05[医药卫生] TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.186.117