检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林泓熠 刘洋[1] 李深 曲小波[1] LIN Hongyi;LIU Yang;LI Shen;QU Xiaobo(School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China;School of Civil Engineering,Tsinghua University,Beijing 100084,China)
机构地区:[1]清华大学车辆与运载学院,北京100084 [2]清华大学土木水利学院,北京100084
出 处:《华南理工大学学报(自然科学版)》2023年第10期46-67,共22页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(52220105001,52221005,52272420)。
摘 要:随着城市汽车保有量的稳步增长,道路交通拥堵问题日益凸显,给城市发展带来了巨大压力。为了有效应对这一挑战,开发能够提高交通效率并降低能源消耗的方法显得至关重要。在当前环境下,车路协同系统作为实现绿色智慧交通系统的一种理想选择,可通过整合和优化各种交通资源,实现交通效率的提升和能源消耗的降低,进而为实现“双碳”目标提供了重要技术支持,已成为交通领域研究和实践的重要方向。本文详细解析了车路协同的基本概念、研究方法和应用场景,并深入讨论了其4个核心技术模块:融合感知、驾驶认知、自主决策和协同控制。文章回顾并总结了这些模块中从传统方法到最新的深度强化学习方法的研究成果,并深入探讨了这些技术和方法在提升交通效率、降低能源消耗和增强道路安全性方面的应用潜力。最后,文章剖析了车路协同系统在实际应用中可能遇到的诸多挑战,如信息传输的安全性、系统的稳定性、环境的复杂性等。为了克服这些挑战,文章从开发整合车端和路端信息的数据集、提升多源感知信息的融合精度、增强车路协同系统的实时性和安全性与优化复杂条件下多车协同决策控制的方法等4个方面展望了未来的发展方向。因此,本文不仅对于车路协同技术的进一步发展具有重要的参考价值,也对于城市交通系统的未来规划和建设具有重要的指导意义。With the steady growth of urban car ownership,the issue of traffic congestion is becoming increasingly prominent,bringing great pressure to urban development.To respond effectively to this challenge,it is critical to de-velop methods that can improve transport efficiency and reduce energy consumption.In current context,the Cooperative Vehicle Infrastructure System(CVIS),an ideal solution for realizing green and intelligent transportation systems,has become an important direction in both transportation research and practice.By integrating and opti-mizing various traffic resources,CVIS not only enhances traffic efficiency and reduces energy consumption but also provides key technical support for achieving“dual carbon”goals.This paper thoroughly analyzed the fundamental concepts,research methodologies and application scenarios of CVIS,and delved into its four core technological modules:fusion perception,driving cognition,autonomous decision-making,and cooperative control.The paper re-viewed and summarized research achievements within these modules,ranging from traditional methods to the latest in deep reinforcement learning techniques.It also explored the potential applications of these technologies and methods for enhancing traffic efficiency,reducing energy consumption,and improving road safety.Finally,the pa-per scrutinized numerous challenges that CVIS may encounter in practical applications,including the security of in-formation transmission,system stability,and environmental complexity.To overcome these challenges,the paper looked forward to the future development in four areas:developing datasets that integrate vehicle-side and roadside information,enhancing the fusion accuracy of multi-source perception information,improving the real-time perfor-mance and safety of CVIS,and optimizing multi-vehicle cooperative decision-making control methods under complex conditions.As a result,this paper not only has important reference value for the advancement of CVIS technology,
关 键 词:车路协同系统 融合感知 驾驶认知 自主决策 协同控制
分 类 号:U495[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.18.100