检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘超[1] 吕翘楚[1] 肖巍[1] PAN Chao;LV Qiao-chu;XIAO Wei(School of Computer Science&Engineering,Changchun University of Technology,Jilin Changchun 130012,China)
机构地区:[1]长春工业大学计算机科学与工程学院,吉林长春130012
出 处:《计算机仿真》2023年第8期191-195,共5页Computer Simulation
基 金:吉林省教育厅科学研究项目(JJKH20220691KJ)。
摘 要:即时通信网络在漏洞检测时,若检测效果较差,会直接影响即时通信网络的安全运行。为提升即时通信网络的漏洞检测精度,提出启发式遗传算法下即时通信网络漏洞检测方法。对即时通信网络的运行状态特征展开具体分析,结合挖掘技术刻画即时通信网络中正常行为和漏洞行为差异性,确定即时通信网络的漏洞特征;基于提取的漏洞特征,利用混合核函数极限学习机模型完成即时通信网络漏洞检测模型的建立;通过启发式遗传算法对模型实施求解处理,根据求解结果确定网络漏洞类型,实现即时通信网路的漏洞自适应检测。实验结果表明,使用上述方法开展即时通信网络漏洞检测时,不仅能够有效检测出网络漏洞,而且能够有效区分漏洞数据与正常数据,说明所提方法的检测效果较好。Currently,the detection effect of vulnerabilities in the instant messaging network may directly affect the safe operation.In order to improve the detection accuracy,this article put forward a method of detecting instant messaging network vulnerabilities based on heuristic genetic algorithm.First of all,the characteristics of the operation state of the instant messaging network were analyzed in detail.And then,the differences between normal behavior and vulnerability behavior in the instant messaging network were depicted by the mining technology,so that the vulnerability characteristics could be determined.Based on the extracted characteristics,the limit learning machine model based on mixed kernel function was used to construct a model for detecting instant messaging network vulnerabilities.Moreover,the heuristic genetic algorithm was adopted to solve the model,and then the type of network vulnerability was determined according to the solution results.Finally,the adaptive detection of vulnerabilities in the instant messaging network was completed.Experimental results show that this method can not only detect network vulnerabilities,but also effectively distinguish between vulnerability data and normal data,indicating that the detection effect of this method is better.
关 键 词:启发式遗传算法 即时通信网络 漏洞检测 特征分析 极限学习机
分 类 号:TP357[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15