检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海航天电子通讯设备研究所
出 处:《数字技术与应用》2023年第10期49-51,共3页Digital Technology & Application
摘 要:本文针对密集杂波和冲击噪声条件下的多站多目标无源定位与跟踪问题,基于信息理论和随机有限集提出一种新的自适应高斯混合概率假设密度(PHD)滤波算法。该算法引入渐消因子,基于新息的方差动态修正滤波增益,并采用KL度量对量测更新步骤中多目标密度近似前后的差异进行衡量,在最小信息增量意义下对高斯元进行合并,得到更准确的多目标状态后验分布,提高了多站多目标无源定位与跟踪精度,并降低了冲击噪声等对估计结果的影响。本文给出了基于信息理论的自适应多目标跟踪算法的高斯混合实现方式,所提出的方法继承了PHD滤波器的优点,具有较好的实时性和多目标跟踪性能。最后,采用仿真实验对本文提出的算法进行验证,实验结果证明了本文所提出算法的有效性和优越性。
关 键 词:信息增量 冲击噪声 概率假设密度 随机有限集 无源定位与跟踪 动态修正 后验分布 滤波增益
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.81.212