视觉辅助下的无人船双雷达障碍物融合检测技术  被引量:1

Obstacle fusion detection technology of USV with dual radar assisted by vision

在线阅读下载全文

作  者:葛燕龙 金久才 李立刚[2] 刘德庆 戴永寿[2] GE Yan-long;JIN Jiu-cai;LI Li-gang;LIU De-qing;DAI Yong-shou(Laboratory of Marine Physics and Remote Sensing,First Institute of Oceanography,Ministry of Natural Resources,Qingdao 266061,China;College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580,China)

机构地区:[1]自然资源部第一海洋研究所海洋物理与遥感研究室,山东青岛266061 [2]中国石油大学(华东)海洋与空间信息学院,山东青岛266580

出  处:《舰船科学技术》2023年第20期87-92,共6页Ship Science and Technology

基  金:国家重点研发计划项目(2021YFC3101101)。

摘  要:毫米波雷达、激光雷达能够给出相对准确的目标距离、尺寸信息,而视觉系统能够给出较直接且丰富的目标纹理特征,将雷达与视觉结合可有效提升无人船障碍物检测性能。本文提出一种基于目标距离及尺寸因子的多传感器数据融合方法。首先,采用串联式目标匹配方法,完成双雷达以及与单目相机的障碍物匹配。其次,利用目标距离及尺寸因子计算各传感器的检测信任度,然后利用Dempster-Shafer(D-S)证据理论对检测信任度进行融合,完成虚假目标剔除。最后,通过无人船海上近距离、远距离和多目标场景试验验证了本文方法的有效性。Millimeter-wave radar and lidar can give relatively accurate target distance and size information,while vision systems can give more direct and rich target texture features.Combining radar and vision can effectively improve obstacle detection performance of unmanned surface vessel(USV).This paper presents a multi-sensor data fusion method based on target distance and size factors.Firstly,the detection data of the same obstacle in the detection results of the three sensors are obtained by using the tandem target matching method.Secondly,the detection confidence of each sensor is calculated by the target distance and size factors.Then,the Dempster-Shafer(D-S)evidence theory is used to fuse the detection confidence of each sensor,and the target lower than the fusion confidence threshold is treated as a false target.Finally,the effectiveness of the proposed method is verified by measured data.The results show that the proposed method can effectively reduce the false alarm rate and missed detection rate of single sensor.

关 键 词:无人船 多传感器数据融合 DS证据理论 

分 类 号:U675.79[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象