基于虚拟现实技术的低质量船舶三维图像重建  

Research on low quality ship 3D image reconstruction based on virtual reality technology

在线阅读下载全文

作  者:周雷 ZHOU Lei(Henan University of Engineering,Zhengzhou 451191,China)

机构地区:[1]河南工程学院,河南郑州451191

出  处:《舰船科学技术》2023年第20期206-209,共4页Ship Science and Technology

基  金:河南省本科高校研究性教学改革研究与实践项目(2022SYJXLX097);河南省职业教育教学改革研究与实践项目;河南工程学院博士培育基金项目(D2022036)。

摘  要:图像重建是图像处理领域中的重要组成部分,为提升图像重建质量,提出基于虚拟现实技术的低质量船舶三维图像重建方法。针对外部环境与采集设备等因素导致图像质量低的问题,采用虚拟现实技术的形态学滤波技术预处理初始船舶图像,通过膨胀、腐蚀与开启、闭合运算实现船舶图像增强处理;利用指数权重系数描述船舶图像特征;通过虚拟现实设备获取船舶三维图像最小识别距离,在船舶图像特征基础上,确定理论图像投影值与实际投影值间的偏差,利用偏差值校准船舶图像重建像素值,实现高精度船舶三维图像重建。实验结果显示,该方法增强后图像峰值信噪比提升14%以上,重建后图像结构相似性达到95%以上,清晰度显著提升。Image reconstruction is an important component in the field of image processing.To improve the quality of image reconstruction,a low-quality ship 3D image reconstruction method based on virtual reality technology is studied.In response to the problem of low image quality caused by external environment and collection equipment,the morphological filtering technology of virtual reality technology is used to preprocess the initial ship image.The ship image enhancement processing is achieved through dilation,corrosion,opening,and closing operations;Using exponential weight coefficients to describe ship image features;Obtain the minimum recognition distance of ship 3D images through virtual reality devices,determine the deviation between the theoretical image projection value and the actual projection value based on ship image features,and use the deviation value to calibrate the pixel values of ship image reconstruction to achieve high-precision ship 3D image reconstruction.The experimental results show that the method enhances the peak signal-to-noise ratio of the image by more than 14%,and the structural similarity of the reconstructed image reaches more than 95%,significantly improving the clarity.

关 键 词:虚拟现实技术 低质量 三维图像重建 图像增强 特征提取 最小识别距离 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象