基于AIS和Canopy+Kmeans算法的高频雷达阵列幅相校准  被引量:3

High Frequency Radar Array Amplitude and Phase Calibration Based on AIS and Canopy+Kmeans Algorithm

在线阅读下载全文

作  者:廖一迁 岳显昌[1] 吴雄斌[1] 张兰[1] LIAO Yiqian;YUE Xianchang;WU Xiongbin;ZHANG Lan(School of Electronic Information,Wuhan University,Wuhan Hubei 430072,China)

机构地区:[1]武汉大学电子信息学院,湖北武汉430072

出  处:《现代雷达》2023年第9期9-15,共7页Modern Radar

摘  要:阵列通道幅相校准是高频地波雷达方位估计必不可少的环节。文中提出一种基于自动识别系统(AIS)和Canopy+Kmeans的聚类算法对阵列的幅相误差进行校准。AIS直接用于阵列幅相校准将会出现许多虚假和错误的校准值信息,因此还需要对AIS得到的校准值进行进一步筛选。该方法结合机器学习中的Canopy算法和Kmeans算法,利用AIS船只信号得到的幅度和相位校准值进行自动聚类,从而得到正确的幅度和相位校准值。校准之后的雷达数据用多重信号分类算法进行到达角(DOA)估计,DOA估计的准确度有了大幅的提高。Array channel amplitude and phase calibration is an essential part of azimuth estimation for high frequency ground wave radar.A Canopy+Kmeans clustering algorithm based on automatic identification system(AIS) information to calibrate the amplitude and phase errors of the array is proposed in this paper.When AIS is directly used for array amplitude and phase calibration,there will be a lot of false and erroneous calibration value information,so it is necessary to further screen the calibration value obtained by AIS.This method combines the Canopy algorithm and the Kmeans algorithm in machine learning to automatically cluster the amplitude and phase calibration values obtained by the AIS ship signal,so as to obtain the correct amplitude and phase calibration values.After the correction,the direction of arrival(DOA) estimation is performed with the multiple signal classification algorithm.The accuracy of the DOA estimation has been greatly improved.

关 键 词:阵列幅相误差校准 自动识别系统 聚类算法 到达角估计 

分 类 号:TN955[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象