基于电子鼻技术对锯谷盗及烟草甲挥发物的研究  

Study on the volatiles of Oryzaephilus surinamensis and Lasioderma serricorn based on electronic nose technology

在线阅读下载全文

作  者:李孟凡 陈二虎 唐静杰 胡怀月 唐培安 Li Mengfan;Chen Erhu;Tang Jingjie;Hu Huaiyue;Tang Pei'an(College of Food Science and Engineering,Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety,Nanjing,Jiangsu 210023)

机构地区:[1]南京财经大学食品科学与工程学院/江苏省现代粮食流通与安全协同创新中心,江苏南京210023

出  处:《粮食科技与经济》2023年第5期120-124,共5页Food Science And Technology And Economy

基  金:国家重点研发计划项目(2021YFD2100604-01);江苏省重点研发计划项目(BE2022377);国家自然科学基金项目(32272388);江苏高校优势学科建设工程资助项目(PAPD)。

摘  要:精准监测和及时发现粮食虫害并采取有针对性的措施对于维护粮食安全至关重要。研究采用电子鼻技术对两种储粮害虫锯谷盗和烟草甲挥发物类型进行了研究,电子鼻响应曲线显示12根传感器均在30 s内达到峰值,雷达指纹图谱显示锯谷盗挥发物总体响应值要高于烟草甲,且两种昆虫的主要挥发物类型为含氮化合物和有机极性化合物。主成分分析结果表明锯谷盗挥发物组内差异更小,二者挥发物信号不存在过度拟合,OPLS-DA鉴别结果显示两种储粮害虫主要可以通过含氮化合物、有机极性化合物和芳香族化合物进行有效区分。Accurate monitoring and timely detection of food pests and taking targeted measures are essential to maintain food security.In this study,the electronic nose detection technology was used to identify the types of volatiles of two common stored grain pests,which included Oryzaephilus surinamensis and Lasioderma serricorn.The electronic nose response curve indicated that the volatiles of two insects could reach the peak value within 30 s for all 12 sensors.The radar fingerprint showed that the overall response value of O.surinamensis was higher than that of L.serricorn,the main volatiles of the two insects were nitrogen compounds and organic polar compounds.The results of principal component analysis showed that there was less difference among the volatile components of O.surinamensis,and there was no over fitting of their volatilization signals.The results showed that the two stored grain pests could be effectively distinguished by nitrogen compounds,organic polar compounds and aromatic compounds by OPLS-DA model.

关 键 词:电子鼻 锯谷盗 烟草甲 挥发物 

分 类 号:S379.5[农业科学—农产品加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象