复杂背景下SAR舰船目标检测算法的改进  被引量:3

Improvement of SAR Ship Target Detection Algorithm in Complex Background

在线阅读下载全文

作  者:何旭鑫 吴建平[1,2,3] 余咏[1] 高雪豪 韦杰 HE Xu-xin;WU Jian-ping;YU Yong;GAO Xue-hao;WEI Jie(School of Information Science&Engineering,Yunnan University,Kunming 650504,China;Yunnan Provincial Electronic Computing Center,Kunming 650223,China;Digital Media Technology Key Laboratory of Universities and Colleges in Yunnan Province,Kunming 650223,China)

机构地区:[1]云南大学信息学院,云南昆明650504 [2]云南省电子计算中心,云南昆明650223 [3]云南省高校数字媒体技术重点实验室,云南昆明650223

出  处:《计算机技术与发展》2023年第11期41-49,共9页Computer Technology and Development

基  金:国家自然科学基金项目(62172354)。

摘  要:由于合成孔径雷达(SAR)图像的特点,如岸上船舶目标密集排列,容易受到陆地影响,造成SAR图像近岸舰船目标检测检测率低和漏检率高的问题,提出了一种基于YOLOv5的改进BiFPN特征融合模块的目标检测算法。针对海岸边舰船目标容易受到复杂建筑影响造成漏检的问题,在YOLOv5的Backbone中加入CBAM注意力机制,通过注意力机制学习舰船目标的特征,提高主干网络的特征提取能力;使用SIoU作为新的损失函数,重新定义预测框和真实框的关系,实现新的高精度定位;增加为四尺度特征检测,重新定义一个大尺度特征检测层,与此对应将特征融合模块中原有PANet替换成改进的多尺度加权双向特征金字塔(BiFPN)网络结构,实现与检测层相对应的高效特征融合模块。实验结果表明,该算法在公开的HRSID舰船数据集的R和mAP分别为88.2%和94.3%,比原来的YOLOv5算法分别提升了2和2.7百分点,达到了在复杂环境下对小目标和密集目标检测的要求。Due to the characteristics of synthetic aperture radar(SAR)images,such as the dense arrangement of ship targets on the shore,which are easily affected by land,resulting in the low detection rate and high missing rate of ship targets on shore in SAR images,a target detection algorithm based on the improved BiFPN feature fusion module based on YOLOv5 is proposed.The CBAM attention mechanism is added to the Backbone of YOLOv5 to learn the features of ship targets through the attention mechanism and improve the feature extraction capability of the backbone network.Using SIoU as a new loss function,the relationship between the predicted box and the real box is redefined to achieve new high-precision positioning.Added four-scale feature detection,a large-scale feature detection layer is redefined.Correspondingly,the original PANet in the feature fusion module is replaced by Improved multi-scale weighted Bidirectional Feature Pyramid(BiFPN)network structure to achieve an efficient feature fusion module corresponding to the detection layer.The experimental results show that the R and mAP of the algorithm in the public HRSID ship data set have reached 88.2%and 94.3%,respectively,which are 2 and 2.7 percentage points higher than that of the original YOLOv5 algorithm,which have achieved the accuracy of small requirements for object and dense object detection.

关 键 词:合成孔径雷达 目标检测 四尺度特征检测 加权双向特征金字塔 CBAM 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象