检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:费飞 翁利国 寿挺 霍凯龙 FEI Fei;WENG Li-guo;SHOU Ting;HUO Kai-long(State Grid Zhejiang Hangzhou Xiaoshan Electric Power Company,Hangzhou 311200 China)
机构地区:[1]国网浙江杭州市萧山区供电有限公司,浙江杭州311200
出 处:《自动化技术与应用》2023年第11期101-104,117,共5页Techniques of Automation and Applications
摘 要:当前电力用户行为特征分类方法对于离散数据的处理能力较差,导致客户服务支撑效果依旧较差。针对此问题,设计基于数据挖掘的电力用户行为特征分类方法。使用LOF算法对离散数据与标准数据之间的距离进行测算,对原始电力数据进行处理,使用主元分析法设定电力用户行为数据观测变量,结合决策树技术构建电力用户特征分类模型,完成行为特征分类。实验结果表明,分类结果更精准,平均电网设备故障发生率为4.06%,用户窃电管控率最高达到87.43%,可有效支撑电力营销服务多个领域,用户服务效果较好。At present,the power user behavior feature classification method has poor processing ability for discrete data,which leads to poor customer service support effect.In order to solve this problem,a classification method based on data mining is designed.LOF al-gorithm is used to measure the distance between the discrete data and the standard data,and the original power data is processed.Principal component analysis is used to set the observation variables of power user behavior data.Combined with decision tree technology,the power user feature classification model is constructed to complete the behavior feature classification.The experi-mental results show that the classification results are more accurate.The average grid equipment failure rate is 4.06%,and the us-er stealing control rate is up to 87.43%.It can effectively support multiple areas of power marketing services,and the user service effect is better.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62