检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易泽仁 谢巍[1] 刘龙文 胥布工[1] YI Ze-ren;XIE Weiy;LIU Long-wen;XU Bu-gong(College of Automation Science and Technology,South China University of Technology,Guangzhou Guangdong 510640,China;School of Electrical Engineering,Guangxi University,Nanning Guangxi 530004,China)
机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510640 [2]广西大学电气工程学院,广西南宁530004
出 处:《控制理论与应用》2023年第10期1730-1736,共7页Control Theory & Applications
基 金:国家自然科学基金项目(61973125);佛山市重点领域科技攻关项目(2020001006812)资助。
摘 要:本文研究了一类单输入单输出非线性系统的神经网络自适应区间观测器设计问题.针对由状态和输入所描述的未知非线性函数的界不可测,现有的区间观测器方法并未有效地处理系统含有参数不确定性的未知非线性函数.首先,本文构造两个径向基函数神经网络来逼近未知非线性部分,进而分别估计系统状态的上下界;然后,选择合适的Lyapunov函数,采用网络权值校正和网络误差选择机制确保所设计的误差动态系统有界和非负性,并证明了神经网络自适应区间观测器的稳定性;最后,通过仿真实例验证了所提出的神经网络自适应区间观测器的有效性.The problem in designing a neural network adaptive interval observer for a class of single-input single-output nonlinear systems is considered in this paper.The bounds of unknown nonlinear functions described by the state and the input are unmeasurable,so that the existing interval observers are not effective in dealing with unknown nonlinear functions with parameter uncertainty in their systems.In this work,two radial basis function(RBF)neural networks are constructed to approximate the unknown nonlinear part,and then the upper and lower bounds of the system state are estimated,respectively.After chosen a suitable Lyapunov function,network weight correction and network error selection mechanisms are given,which are used to make sure the designed error dynamic system is bounded and non-negative.Furthermore,the stability of the neural network adaptive interval observer is proved.Finally,a numerical simulation example is applied to verify the effectiveness of the proposed neural network adaptive interval observer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.27.22