基于改进多分类器的用户电表采集数据修复方法  被引量:21

Restoration Method for User Electricity Meter Collection Data Based on Improved Multiple Classifiers

在线阅读下载全文

作  者:唐冬来 李玉 何为[2] 刘友波[3] 欧渊 吴磊 TANG Donglai;LI Yu;HE Wei;LIU Youbo;OU Yuan;WU Lei(Aostar Information Technology Co.,Ltd.,Chengdu 610074,China;State Grid Sichuan Electric Power Company,Chengdu 610041,China;College of Electrical Engineering,Sichuan University,Chengdu 610065,China)

机构地区:[1]四川中电启明星信息技术有限公司,四川省成都市610074 [2]国网四川省电力公司,四川省成都市610041 [3]四川大学电气工程学院,四川省成都市610065

出  处:《电力系统自动化》2023年第21期137-146,共10页Automation of Electric Power Systems

基  金:四川省科技计划资助项目(2021GFW0021)

摘  要:用户电表位于配电网末端,是开展新型电力系统新兴业务的关键环节。受电表故障、信道噪声等因素影响,用户电表采集数据存在缺失、错误等异常情况,进而影响配电台区“源网荷储”控制的准确性。为解决传统用户电表采集数据修复方法中存在的时序变化规律挖掘不足、异常值修复误差大的问题,提出一种基于改进多分类器的用户电表采集数据修复方法,从而改进多分类器的结构,提取异常数据中的完整区块进行多分类器模型训练,并对用户电表采集数据进行分类。在此基础上,通过变分自编码器学习分类数据的真实变化规律,采用分类集合方式生成修复数据。最后,以某小区用户电表为例进行仿真,得出在异常数据为60%情况下的修复误差为2.8%。该结果表明,所提方法与长短期记忆网络、生成对抗网络相比,具有更好的异常数据修复效果。The user electricity meters are located at the end of the distribution network,which are the key link to develop the emerging business of Energy Internet.Due to the influence of electricity meter failure,channel noise and other factors,there are some abnormal situations such as missing and error in the data collected by the user electricity meter,which further affects the control accuracy of the“source,grid,load and storage”in the distribution station area.In order to solve the problems of insufficient mining of time sequence change rule and large error of anomaly repair in traditional restoration methods for user electricity meter collection data,a restoration method for user electricity meter collection data based on improved multiple classifiers is proposed to improve the structure of multiple classifiers,extract the intact block of abnormal data for multi-classifier model training,and classify the user electricity meter collection data.On this basis,a variational autoencoder is used to learn the real change rule of classified data,and a set classification method is used to generate the restoration data.Finally,taking the user electricity meters of a community as a simulation case,the restoration error is 2.8%when the abnormal data is 60%.The results show that the proposed method has better abnormal data restoration effect than the long short-term memory network and the generative adversarial network.

关 键 词:多分类器 变分自编码器 用户电表 采集数据 数据修复 电力线载波 

分 类 号:TM933.4[电气工程—电力电子与电力传动] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象