基于激光诱导击穿光谱技术的煤灰分特征研究  

Research on coal ash content characteristics based on laser-induced breakdown spectroscopy

在线阅读下载全文

作  者:李云红[1] 余天骄 周小计 管今哥 郑永秋[3] 张成飞 程博 LI Yun-hong;YU Tian-jiao;ZHOU Xiao-ji;GUAN Jin-ge;ZHENG Yong-qiu;ZHANG Cheng-fe;CHENG Bo(School of Electronics and Information,Xi′an Polytechnic University,Xi′an 710048,China;Electronic School,Peking University,Beijing 100871,China;State Key Laboratory of Dynamic Measurement Technology,Taiyuan 030051,China;Inner Mongolia Test Institute of Aerospace Dynamic Machine,Hohhot 010076,China)

机构地区:[1]西安工程大学电子信息学院,陕西西安710048 [2]北京大学电子学院,北京100871 [3]中北大学省部共建动态测试技术国家重点实验室,山西太原030051 [4]内蒙航天动力机械测试所,内蒙古呼和浩特010076

出  处:《激光与红外》2023年第11期1657-1664,共8页Laser & Infrared

基  金:国家自然科学基金项目(No.61727819);陕西省科技厅自然科学基础研究重点项目(No.2022JZ-35)资助。

摘  要:灰分是衡量煤炭质量优劣的关键指标,是衡量煤矿和选煤厂煤炭产品质量的主要指标之一。针对传统煤灰分含量识别效率低、煤样本质量不高的问题,本文基于粒子群优化算法(PSO)和BP神经网络,提出了基于粒子群神经网络的煤炭灰分预测模型。目的是快速识别出煤炭产品中灰分的含量,为煤炭开采提供技术支撑。研究选取了180个标准煤粉样品,1~140号样本数据用于训练集,141~180号样本数据作为测试集。应用PSO-BP模型对煤炭灰分特性进行了研究,仿真结果表明:优化后的6维BP神经网络模型,决定系数R^(2)为0.88501越接近1,表明建立的PSO-BP模型具有较好的预测性能,灰分预测值与灰分真值无限逼近。进而表明所构建的灰分预测模型具有较高的预测精度,提升了模型的泛化能力和预测精度,为后续的LIBS术应用于煤炭检测提供一定的理论依据。Ash content is a key index to measure the quality of coal and is one of the main indicators of coal product quality in coal mines and coal preparation plants.Aiming at the problems of low identification efficiency of traditional coal ash content and low quality of coal samples,a coal prediction model based on particle swarm optimization(PSO)and BP neural network is built and the purpose is to quickly identify the ash content in coal products and provide technical support for coal mining.180 standard pulverized coal samples are selected for the study,and the sample data of No.1~140 are used for the training set,and the sample data of No.141~180 are used as the test set.The PSO-BP model is applied to study the coal ash characteristics,and the simulation results show that the optimized 6-dimensional BP neural network model,with the coefficient of determinationR^(2)of 0.88501,is closer to 1,indicating that the established PSO-BP model has better prediction performance,and the predicted value of ash is infinitely close to the true value of ash.In turn,it shows that the constructed gray prediction model has high prediction accuracy,which improves the generalization ability and prediction accuracy of the model,and provides some theoretical basis for the subsequent application of LIBS technique to coal detection.

关 键 词:煤灰分 BP神经网络 粒子群算法 LIBS 光谱强度 

分 类 号:O433.4[机械工程—光学工程] TN249[理学—光学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象