具有Neumann边界条件曲率方程解的估计  

Estimation of Solutions of Curvature Equations with Neumann Bounaary Conditions

在线阅读下载全文

作  者:吴婷婷 韩菲[1] 孙文静 WU Ting-ting;HAN Fei;SUN Wen-Jing(College of Mathematical Sciences,Xinjiang Normal University,Urumqi Xinjiang 830017,China)

机构地区:[1]新疆师范大学数学科学学院,新疆乌鲁木齐830017

出  处:《淮阴师范学院学报(自然科学版)》2023年第4期289-295,共7页Journal of Huaiyin Teachers College;Natural Science Edition

基  金:国家自然科学基金项目(12061078)。

摘  要:研究一类具有Neumann边界条件的平均曲率方程解的估计,研究方法主要是通过构造合适的辅助函数,利用函数在极大值点的性质,Hopf引理以及极大值原理得到方程解的梯度估计.先对此类方程中的ut进行估计,进而得到了一类具有Neumann边值问题平均曲率方程中f依赖于x,u,Du时解的边界梯度估计.This paper studies the estimation of solutions of a class of mean curvature equations with Neumann boundary conditions.The main research methods are to construct appropriate auxiliary functions,use the properties of functions at maximum points,Hopf lemma and maximum principle to get gradient estimation of equation solutions.firstly,this paper estimates the u t solutions of such equation.The next,we obtain the gradient estimation of a class of the mean curvature equation with Neumann boundary value problem f dependent on x,u and Du.

关 键 词:NEUMANN边界 极大值原理 梯度估计 平均曲率方程 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象