检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔金荣[1,2] 魏文钊 赵敏 CUI Jinrong;WEI Wenzhao;ZHAO Min(College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642,China;Guangzhou Key Laboratory of Intelligent Agriculture,Guangzhou 510642,China;Shenzhen Institute of Artificial Intelligence and Robotics,Shenzhen 518129,China)
机构地区:[1]华南农业大学数学与信息学院,广州510642 [2]广州市智慧农业重点实验室,广州510642 [3]深圳市人工智能与机器人研究院,深圳518129
出 处:《农业机械学报》2023年第11期217-224,276,共9页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金项目(32172780)。
摘 要:针对水稻病害识别方法准确度低、模型收敛速度缓慢的问题,本文提出了一种高性能的轻量级水稻病害识别模型,简称为CA(Coordinate attention)-MobileNetV3。通过微调的迁移学习策略完善了模型的训练,提升了模型收敛速度。首先创建10个种类的数据集,其中包含9种水稻病害和1种水稻健康叶片。其次使用CA模块,在通道注意力中嵌入空间坐标信息,提高模型的特征提取能力与泛化能力。最后,将改进后的MobileNetV3网络作为特征提取网络,并加入SVM多分类器,提高模型精度。实验结果表明,在本文构建的水稻病害数据集上,初始的MobileNetV3识别准确率仅为95.78%,F1值为95.36%;加入CA模块后识别准确率和F1值分别提高至96.73%和96.56%;再加入SVM多分类器,通过迁移学习后,改进模型的识别准确率和F1值分别达到97.12%和97.04%,参数量和耗时仅为2.99×106和0.91 s,明显优于其他模型。本文提出的CA-MobileNetV3水稻病害识别模型能够有效识别水稻叶部病害,实现了轻量级、高性能、易部署的水稻病害分类识别算法。For the problems of low accuracy of rice disease identification methods and slow convergence of models,a high⁃performance lightweight rice disease identification model was proposed,referred to as coordinate attention(CA)MobileNetV3.The training of the model was optimized by fine⁃tuning the migration learning strategy,and the convergence speed of the model was improved.Firstly,a ten species dataset was created,containing nine rice diseases and healthy rice leaves.Secondly,the CA module was also used to embed spatial coordinate information in the channel attention to improve the feature extraction and generalization ability of the model.In addition,the improved MobileNetV3 network was used as the feature extraction network and the SVM multi⁃classifier was added to improve the model accuracy.The experimental results showed that on the rice disease dataset constructed,the initial MobileNetV3 recognition accuracy was only 95.78%and the F1 score was 95.36%,and then the recognition accuracy and F1 score were improved to 96.73%and 96.56%,respectively,after adding the CA module,and then the SVM multi⁃classifier was added,and the recognition accuracy and F1 scores reached 97.12%and 97.04%,respectively,the number of parameters and the time taken were only 2.99×106 and 0.91 s,which were significantly better than that of other models.The experimental results showed that the CA MobileNetV3 rice disease recognition model proposed can effectively recognize rice leaf diseases and achieve a lightweight,high⁃performance and easy⁃to⁃deploy rice disease classification and recognition algorithm.
关 键 词:水稻病害 改进MobileNetV3 卷积神经网络 注意力机制 支持向量机
分 类 号:S435.116[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117