机构地区:[1]南京大学医学院附属金陵医院神经内科,南京210002 [2]皖南医学院附属弋矶山医院神经内科,芜湖241001 [3]中国科技大学附属第一医院(安徽省立医院)脑血管病中心暨神经内科,合肥230001 [4]苏州大学附属第二医院神经内科,苏州215004 [5]广州市第一人民医院神经内科,广州510180 [6]中山大学附属第一医院神经内科,广州510080 [7]南京中医药大学附属江苏省中医院神经内科,南京210029 [8]南京医科大学附属脑科医院脑血管病救治中心,南京210029
出 处:《国际脑血管病杂志》2023年第7期481-489,共9页International Journal of Cerebrovascular Diseases
基 金:国家自然科学基金(81870946,U22A20341);江苏省重点研发计划(BE2020697)。
摘 要:目的探讨非急性期有症状颈内动脉闭塞(symptomatic internal carotid artery occlusion,SICAO)血管内再通治疗后成功再通的预测因素,利用分类和回归树(classification and regression tree,CART)算法建立决策树模型并评价模型预测效能。方法回顾性纳入在中国8家综合卒中中心接受血管内再通治疗的非急性期SICAO患者,随机分配至训练集和验证集。在训练集通过最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)算法筛选重要变量,基于CART算法构建决策树预测模型。在验证集中使用受试者工作特征(receiver operating characteristic,ROC)曲线、Hosmer-Lemeshow拟合优度检验以及混淆矩阵进行模型评价。结果最终纳入非急性期SICAO患者511例,按7∶3比例随机划分为训练集(357例)和验证集(154例),血管内再通治疗后成功再通率分别为58.8%和58.4%,差异无统计学意义(χ2=0.007,P=0.936)。采用LASSO回归筛选出的6个系数不为零变量构建CART决策树模型,最终决策树纳入5个变量,共5层,包含9条分类规则。闭塞节段数较少、近端残腔为锥形、ASITN/SIR侧支分级1~2级、缺血性事件为缺血性卒中以及最近事件至血管内再通治疗时间为1~30 d是成功再通的预测指标。ROC分析显示,决策树模型训练集曲线下面积为0.810(95%置信区间0.764~0.857),模型预测成功再通的最佳截断值为0.71;验证集曲线下面积为0.763(95%置信区间0.687~0.839),准确度为70.1%,精密度为81.4%,敏感性为63.3%,特异性79.7%。两组中Hosmer-Lemeshow检验均P>0.05。结论基于缺血性事件类型、最近事件至血管内再通治疗时间、近端残腔形态、闭塞节段数和ASITN/SIR侧支分级构建的决策树模型能有效预测非急性期SICAO血管内再通治疗后成功再通。Objective To investigate predictive factors for successful endovascular recanalization in patients with non-acute symptomatic internal carotid artery occlusion(SICAO),to develop a decision tree model using the Classification and Regression Tree(CART)algorithm,and to evaluate the predictive performance of the model.Methods Patients with non-acute SICAO received endovascular therapy at 8 comprehensive stroke centers in China were included retrospectively.They were randomly assigned to a training set and a validation set.In the training set,the least absolute shrinkage and selection operator(LASSO)algorithm was used to screen important variables,and a decision tree prediction model was constructed based on CART algorithm.The model was evaluated using the receiver operating characteristic(ROC)curve,Hosmer-Lemeshow goodness-of-fit test and confusion matrix in the validation set.Results A total of 511 patients with non-acute SICAO were included.They were randomly divided into a training set(n=357)and a validation set(n=154)in a 7:3 ratio.The successful recanalization rates after endovascular therapy were 58.8%and 58.4%,respectively.There was no statistically significant difference(χ2=0.007,P=0.936).A CART decision tree model consisting of 5 variables,5 layers and 9 classification rules was constructed using the six non-zero-coefficient variables selected by LASSO regression.The predictive factors for successful recanalization included fewer occluded segments,proximal tapered stump,ASITN/SIR collateral grading of 1-2,ischemic stroke,and a recent event to endovascular therapy time of 1-30 d.ROC analysis showed that the area under curve of the decision tree model in the training set was 0.810(95%confidence interval 0.764-0.857),and the optimal cut-off value for predicting successful recanalization was 0.71.The area under curve in the validation set was 0.763(95%confidence interval 0.687-0.839).The accuracy was 70.1%,precision was 81.4%,sensitivity was 63.3%,and specificity was 79.7%.The Hosmer-Lemeshow test in both group
关 键 词:颈动脉疾病 颈内动脉 慢性病 血管内手术 治疗结果 试验预期值 决策树
分 类 号:R743[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...